Acknowledgement
This study was supported by the Priority Research Center Program through the NRF funded by the Korean Ministry of Education, Science, and Technology (2016R1A6A1A03007648), the Basic Science Research Program of the National Research Foundation of Korea (NRF) (NRF-2020R1I1A1A01074412). This research was also funded by the 4th BK21 project (Educational Research Group for Platform development of management of emerging infectious diseases) funded the Korean ministry of education (5199990614732).
References
- Yuan Y, Jiang YC, Sun CK, Chen QM. 2016. Role of the tumor microenvironment in tumor progression and the clinical applications (Review). Oncol. Rep. 35: 2499-2515. https://doi.org/10.3892/or.2016.4660
- Zhang W, Borcherding N, Kolb R. 2020. IL-1 Signaling in tumor microenvironment. Adv. Exp. Med. Biol. 1240: 1-23. https://doi.org/10.1007/978-3-030-38315-2_1
- Balkwill FR, Lee A, Aldam G, Moodie E, Thomas JA, Tavernier J, et al. 1986. Human tumor xenografts treated with recombinant human tumor necrosis factor alone or in combination with interferons. Cancer Res. 46: 3990-3993.
- Magidey-Klein K, Cooper TJ, Kveler K, Normand R, Zhang T, Timaner M, et al. 2021. IL-6 contributes to metastatic switch via the differentiation of monocytic-dendritic progenitors into prometastatic immune cells. J. ImmunoTher. Cancer 9: e002856.
- Shacter E, Arzadon GK, Williams J. 1992. Elevation of interleukin-6 in response to a chronic inflammatory stimulus in mice: inhibition by indomethacin. Blood 80: 194-202. https://doi.org/10.1182/blood.V80.1.194.194
- Lee HH, Jung J, Moon A, Kang H, Cho H. 2019. Antitumor and anti-invasive effect of apigenin on human breast carcinoma through suppression of IL-6 expression. Int. J. Mol. Sci. 20: 3143.
- Shakiba E, Ramezani M, Sadeghi M. 2018. Evaluation of serum interleukin-6 levels in hepatocellular carcinoma patients: a systematic review and meta-analysis. Clin. Exp. Hepatol. 4: 182-190. https://doi.org/10.5114/ceh.2018.78122
- Soresi M, Giannitrapani L, D'Antona F, Florena AM, La Spada E, Terranova A, et al. 2006. Interleukin-6 and its soluble receptor in patients with liver cirrhosis and hepatocellular carcinoma. World J. Gastroenterol. 12: 2563-2568. https://doi.org/10.3748/wjg.v12.i16.2563
- Doherty DG, O'Farrelly C. 2000. Innate and adaptive lymphoid cells in the human liver. Immunol. Rev. 174: 5-20. https://doi.org/10.1034/j.1600-0528.2002.017416.x
- Malmberg KJ, Carlsten M, Bjorklund A, Sohlberg E, Bryceson YT, Ljunggren HG. 2017. Natural killer cell-mediated immunosurveillance of human cancer. Semin. Immunol. 31: 20-29. https://doi.org/10.1016/j.smim.2017.08.002
- Mikulak J, Bruni E, Oriolo F, Di Vito C, Mavilio D. 2019. Hepatic natural killer cells: organ-specific sentinels of liver immune homeostasis and physiopathology. Front. Immunol. 10: 946.
- Lee HH, Kang H, Cho H. 2017. Natural killer cells and tumor metastasis. Arch. Pharm. Res. 40: 1037-1049. https://doi.org/10.1007/s12272-017-0951-9
- Crane CA, Han SJ, Barry JJ, Ahn BJ, Lanier LL, Parsa AT. 2010. TGF-beta downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients. Neuro. Oncol. 12: 7-13. https://doi.org/10.1093/neuonc/nop009
- Wong JL, Berk E, Edwards RP, Kalinski P. 2013. IL-18-primed helper NK cells collaborate with dendritic cells to promote recruitment of effector CD8+ T cells to the tumor microenvironment. Cancer Res. 73: 4653-4662. https://doi.org/10.1158/0008-5472.CAN-12-4366
- Erler JT, Cawthorne CJ, Williams KJ, Koritzinsky M, Wouters BG, Wilson C, et al. 2004. Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol. Cell. Biol. 24: 2875-2889. https://doi.org/10.1128/MCB.24.7.2875-2889.2004
- Peng XH, Karna P, Cao Z, Jiang BH, Zhou M, Yang L. 2006. Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression. J. Biol. Chem. 281: 25903-25914. https://doi.org/10.1074/jbc.M603414200
- Van Meir E. 1996. Hypoxia-mediated selection of cells with diminished apoptotic potential to solid tumours. Neurosurgery 39: 878-879. https://doi.org/10.1097/00006123-199610000-00057
- Kondo A, Safaei R, Mishima M, Niedner H, Lin X, Howell SB. 2001. Hypoxia-induced enrichment and mutagenesis of cells that have lost DNA mismatch repair. Cancer Res. 61: 7603-7607.
- Dai X, Pi G, Yang SL, Chen GG, Liu LP, Dong HH. 2018. Association of PD-L1 and HIF-1α coexpression with poor prognosis in Hepatocellular Carcinoma. Transl. Oncol. 11: 559-566. https://doi.org/10.1016/j.tranon.2018.02.014
- Lu Y, Hu J, Sun W, Duan X, Chen X. 2015. Hypoxia-mediated immune evasion of pancreatic carcinoma cells. Mol. Med. Rep. 11: 3666-3672. https://doi.org/10.3892/mmr.2015.3144
- Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235-238. https://doi.org/10.1038/nature04753
- Dang Eric V, Barbi J, Yang H-Y, Jinasena D, Yu H, Zheng Y, et al. 2011. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146: 772-784. https://doi.org/10.1016/j.cell.2011.07.033
- Wang L, Yi T, Zhang W, Pardoll DM, Yu H. 2010. IL-17 enhances tumor development in carcinogen-induced skin cancer. Cancer Res. 70: 10112-10120. https://doi.org/10.1158/0008-5472.CAN-10-0775
- Chang SH, Mirabolfathinejad SG, Katta H, Cumpian AM, Gong L, Caetano MS, et al. 2014. T helper 17 cells play a critical pathogenic role in lung cancer. Proc. Natl. Acad. Sci. USA 111: 5664-5669. https://doi.org/10.1073/pnas.1319051111
- Tobin AJ, Noel NP, Christian SL, Brown RJ. 2021. Lipoprotein lipase hydrolysis products induce pro-inflammatory cytokine expression in triple-negative breast cancer cells. BMC Res. Notes 14: 315.
- Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH. 2011. Activating and inhibitory receptors of natural killer cells. Immunol. Cell Biol. 89: 216-224. https://doi.org/10.1038/icb.2010.78
- Singh V, Khurana A, Navik U, Allawadhi P, Bharani KK, Weiskirchen R. 2022. Apoptosis and pharmacological therapies for targeting thereof for cancer therapeutics. Sci 4: 15.
- Xu S, Yu C, Ma X, Li Y, Shen Y, Chen Y, et al. 2021. IL-6 promotes nuclear translocation of HIF-1α to aggravate chemoresistance of ovarian cancer cells. Eur. J. Pharmacol. 894: 173817.
- Croce M, Rigo V, Ferrini S. 2015. IL-21: a pleiotropic cytokine with potential applications in oncology. J. Immunol. Res. 2015: 696578.
- Skak K, Frederiksen KS, Lundsgaard D. 2008. Interleukin-21 activates human natural killer cells and modulates their surface receptor expression. Immunology 123: 575-583. https://doi.org/10.1111/j.1365-2567.2007.02730.x
- Gotthardt D, Sexl V. 2016. STATs in NK-cells: the good, the bad, and the ugly. Front. Immunol. 7: 694.
- Lee HH, Cho H. 2020. Attenuated anti-tumor activity of NK-92 cells by invasive human breast carcinoma MDA-MB-231 cells. Mol. Cell. Toxicol. 16: 139-147. https://doi.org/10.1007/s13273-019-00059-4
- Li R, Wen A, Lin J. 2020. Pro-inflammatory cytokines in the formation of the pre-metastatic niche. Cancers 12: 3752.
- Heichler C, Scheibe K, Schmied A, Geppert CI, Schmid B, Wirtz S, et al. 2020. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis. Gut 69: 1269-1282. https://doi.org/10.1136/gutjnl-2019-319200
- Silva EM, Mariano VS, Pastrez PRA, Pinto MC, Castro AG, Syrjanen KJ, et al. 2017. High systemic IL-6 is associated with worse prognosis in patients with non-small cell lung cancer. PLoS One 12: e0181125.
- Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, et al. 2021. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 6: 263.
- Xu J LH, Wu G, Zhu M and Li M. 2021. IL-6/STAT3 Is a promising therapeutic target for hepatocellular carcinoma. Front. Oncol. 11: 760971.
- Cifaldi L, Prencipe G, Caiello I, Bracaglia C, Locatelli F, De Benedetti F, et al. 2015. Inhibition of natural killer cell cytotoxicity by interleukin-6: Implications for the pathogenesis of macrophage activation syndrome. Arthritis Rheumatol. 67: 3037-3046. https://doi.org/10.1002/art.39295
- Gao Y, Souza-Fonseca-Guimaraes F, Bald T, Ng SS, Young A, Ngiow SF, et al. 2017. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat. Immunol. 18: 1004-1015. https://doi.org/10.1038/ni.3800
- Palomares O, Martin-Fontecha M, Lauener R, Traidl-Hoffmann C, Cavkaytar O, Akdis M, et al. 2014. Regulatory T cells and immune regulation of allergic diseases: roles of IL-10 and TGF-β. Genes Immun. 15: 511-520. https://doi.org/10.1038/gene.2014.45
- Jelicic K, Cimbro R, Nawaz F, Huang da W, Zheng X, Yang J, et al. 2013. The HIV-1 envelope protein gp120 impairs B cell proliferation by inducing TGF-β1 production and FcRL4 expression. Nat. Immunol. 14: 1256-1265. https://doi.org/10.1038/ni.2746
- Terme M, Ullrich E, Aymeric L, Meinhardt K, Desbois M, Delahaye N, et al. 2011. IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Res. 71: 5393-5399. https://doi.org/10.1158/0008-5472.CAN-11-0993
- Li Y, Bleakley M, Yee C. 2005. IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. J. Immunol. 175: 2261-2269. https://doi.org/10.4049/jimmunol.175.4.2261
- Wu J, Gao F-x, Wang C, Qin M, Han F, Xu T, et al. 2019. IL-6 and IL-8 secreted by tumour cells impair the function of NK cells via the STAT3 pathway in oesophageal squamous cell carcinoma. J. Exper. Clin. Cancer Res. 38: 321.
- Qiu JG, Wang L, Liu WJ, Wang JF, Zhao EJ, Zhou FM, et al. 2019. Apigenin inhibits IL-6 transcription and suppresses esophageal carcinogenesis. Front. Pharmacol. 10: 1002.
- Lee HH, Cho H. 2022. Apigenin increases natural killer cytotoxicity to human hepatocellular carcinoma expressing HIF-1α through high interaction of CD95/CD95L. J. Microbiol. Biotechnol. 32: 397-404. https://doi.org/10.4014/jmb.2201.01010
- Chouaib S, Noman MZ, Kosmatopoulos K, Curran MA. 2017. Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer. Oncogene. 36: 439-445. https://doi.org/10.1038/onc.2016.225
- Noman MZ, Hasmim M, Messai Y, Terry S, Kieda C, Janji B, et al. 2015. Hypoxia: a key player in antitumor immune response. A review in the theme: cellular responses to hypoxia. Am. J. Physiol. Cell Physiol. 309: C569-C579. https://doi.org/10.1152/ajpcell.00207.2015
- Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, et al. 2014. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exper. Med. 211: 781-790. https://doi.org/10.1084/jem.20131916
- Mancino A, Schioppa T, Larghi P, Pasqualini F, Nebuloni M, Chen I-H, et al. 2008. Divergent effects of hypoxia on dendritic cell functions. Blood 112: 3723-3734. https://doi.org/10.1182/blood-2008-02-142091
- Laderoute KR, Calaoagan JM, Gustafson-Brown C, Knapp AM, Li GC, Mendonca HL, et al. 2002. The response of c-jun/AP-1 to chronic hypoxia is hypoxia-inducible factor 1 alpha dependent. Mol. Cell. Biol. 22: 2515-2523. https://doi.org/10.1128/MCB.22.8.2515-2523.2002
- Conway EM, Collen D, Carmeliet P. 2001. Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 49: 507-521. https://doi.org/10.1016/S0008-6363(00)00281-9
- Balsamo M, Manzini C, Pietra G, Raggi F, Blengio F, Mingari MC, et al. 2013. Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC. Eur. J. Immunol. 43: 2756-2764. https://doi.org/10.1002/eji.201343448
- Sarkar S, Germeraad WT, Rouschop KM, Steeghs EM, van Gelder M, Bos GM, et al. 2013. Hypoxia induced impairment of NK cell cytotoxicity against multiple myeloma can be overcome by IL-2 activation of the NK cells. PLoS One 8: e64835.
- Brady J, Hayakawa Y, Smyth MJ, Nutt SL. 2004. IL-21 induces the functional maturation of murine NK cells. J. Immunol. 172: 2048-2058. https://doi.org/10.4049/jimmunol.172.4.2048
- de Rham C, Ferrari-Lacraz S, Jendly S, Schneiter G, Dayer J-M, Villard J. 2007. The proinflammatory cytokines IL-2, IL-15 and IL-21 modulate the repertoire of mature human natural killer cell receptors. Arthritis Res. Ther. 9: R125.
- Wendt K, Wilk E, Buyny S, Schmidt RE, Jacobs R. 2007. Interleukin-21 differentially affects human natural killer cell subsets. Immunology 122: 486-495. https://doi.org/10.1111/j.1365-2567.2007.02675.x
- Gotthardt D, Putz EM, Straka E, Kudweis P, Biaggio M, Poli V, et al. 2014. Loss of STAT3 in murine NK cells enhances NK cell-dependent tumor surveillance. Blood 124: 2370-2379. https://doi.org/10.1182/blood-2014-03-564450