DOI QR코드

DOI QR Code

Development of reduced-order thermal stratification model for upper plenum of a lead-bismuth fast reactor based on CFD

  • Tao Yang (School of Nuclear Science and Technology, University of South China) ;
  • Pengcheng Zhao (School of Nuclear Science and Technology, University of South China) ;
  • Yanan Zhao (School of Nuclear Science and Technology, University of South China) ;
  • Tao Yu (School of Nuclear Science and Technology, University of South China)
  • 투고 : 2022.10.20
  • 심사 : 2023.05.01
  • 발행 : 2023.08.25

초록

After an emergency shutdown of a lead-bismuth fast reactor, thermal stratification occurs in the upper Plenum, which negatively impacts the integrity of the reactor structure and the residual heat removal capacity of natural circulation flow. The research on thermal stratification of reactors has mainly been conducted using an experimental method, a system program, and computational fluid dynamics (CFD). However, the equipment required for the experimental method is expensive, accuracy of the system program is unpredictable, and resources and time required for the CFD approach are extensive. To overcome the defects of thermal stratification analysis, a high-precision full-order thermal stratification model based on CFD technology is prepared in this study. Furthermore, a reduced-order model has been developed by combining proper orthogonal decomposition (POD) with Galerkin projection. A comparative analysis of thermal stratification with the proposed full-order model reveals that the reduced-order thermal stratification model can well simulate the temperature distribution in the upper plenum and rapidly elucidate the thermal stratification interface characteristics during the lead-bismuth fast reactor accident. Overall, this study provides an analytical tool for determining the thermal stratification mechanism and reducing thermal stratification.

키워드

과제정보

This work is supported by the "Coupled Response Mechanism of Lead-based Fast Reactor Hot Pool and Cold Pool Thermal stratification under Asymmetric Thermal Load Condition and its Influence on Natural Circulation Performance" project sponsored by National Natural Science Foundation of China (Grant No. 11905101).

참고문헌

  1. J. Schneider, M. Anderson, E. Baglietto, et al., Thermal Stratification Analysis for Sodium Fast reactors[C]//2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018), Univ. of Wisconsin, Madison, WI (United States), 2018.
  2. S. Moriya, N. Tanaka, N. Katano, et al., Effects of Reynolds number and Richardson number on thermal stratification in hot plenum[J], Nucl. Eng. Des. 99 (1987) 441-451. https://doi.org/10.1016/0029-5493(87)90140-3
  3. J.A. Schneider, M.H. Anderson, Thermal Stratification in a Pool-type geometry [R], university of Wisconsin Madison, 2019.
  4. G. Bandini, M. Polidori, A. Gerschenfeld, et al., Assessment of systems codes and their coupling with CFD codes in thermal-hydraulic applications to innovative reactors[J], Nucl. Eng. Des. 281 (2015) 22-38. https://doi.org/10.1016/j.nucengdes.2014.11.003
  5. N. Yue, Z Ma, R Cai, et al., Thermal-hydraulic analysis of EBR-II shutdown heat removal tests SHRT-17 and SHRT-45R[J], Prog. Nucl. Energy 85 (2015) 682-693. https://doi.org/10.1016/j.pnucene.2015.09.002
  6. Y. Ieda, I Maekawa, T. Muramatsu, et al., Experimental and analytical studies of the thermal stratification phenomenon in the outlet plenum of fast breeder reactors[J], Nucl. Eng. Des. 120 (2e3) (1990) 403-414. https://doi.org/10.1016/0029-5493(90)90390-J
  7. T Muramatsu, H Ninokata, Investigation of turbulence modelling in thermal stratification analysis[J], Nucl. Eng. Des. 150 (1) (1994) 81-93. https://doi.org/10.1016/0029-5493(94)90053-1
  8. K. Zwijsen, D. Dovizio, V. Moreau, et al., CFD modelling of the CIRCE facility[J], Nucl. Eng. Des. 353 (2019) 110277.
  9. C. Lu, Z. Wu, S. Morgan, et al., An efficient 1-D thermal stratification model for pool-type sodium-cooled fast reactors[J], Nucl. Technol. 206 (10) (2020) 1465-1480. https://doi.org/10.1080/00295450.2020.1719799
  10. Y. Liang, B.J. Zheng, X.W. Gao, et al., Reduced order model analysis method via proper orthogonal decomposition for nonlinear transient heat conduction problems (in Chinese), Sci Sin-Phys Mech Astron 48 (2018), 124603, https://doi.org/10.1360/SSPMA2018-00199.
  11. H. Gong, Y. Yu, Q. Li, Reactor power distribution detection and estimation via a stabilized gappy proper orthogonal decomposition method[J], Nucl. Eng. Des. 370 (2020), 110833.
  12. Ye Wang, Xinyue Zhu, Zhendong Sun, Flow and heat transfer characteristics analysis of flat tube-bank-fin heat exchanger with sine wave fin based on POD reduced-order model[J], CIE J. 73 (5) (2022) 1986-1994.
  13. Y.I. Chang, P.J. Finck, C. Grandy, et al., Advanced Burner Test Reactor Pre-conceptual Design Report[R], Argonne National Lab.(ANL), Argonne, IL (United States), 2008.
  14. E. Munkhzul, J. Thomas, CFD simulations of the effects of thermal stratification on the start of natural circulation during SFR transients, in: International Congress on Advances in Nuclear Power Plants (ICAPP), 2014.
  15. K. Zwijsen, D. Dovizio, V. Moreau, et al., CFD modelling of the CIRCE facility[J], Nucl. Eng. Des. 353 (2019), 110277.
  16. D.J. Lucia, P.S. Beran, W.A. Silva, Reduced-order modeling: new approaches for computational physics[J], Prog. Aero. Sci. 40 (1-2) (2004) 51-117. https://doi.org/10.1016/j.paerosci.2003.12.001
  17. C.W. Rowley, T. Colonius, R.M. Murray, Model reduction for compressible flows using POD and Galerkin projection[J], Phys. Nonlinear Phenom. 189 (1-2) (2004) 115-129. https://doi.org/10.1016/j.physd.2003.03.001
  18. S. Volkwein, Model Reduction Using Proper Orthogonal decomposition[J], Lecture Notes, Institute of Mathematics and Scientific Computing, University of Graz, 2011, p. 1025, see, http://www.uni-graz.at/imawww/volkwein/POD.pdf.
  19. Hang Li, Statistical Learning Methods [M], Tsinghua University Press, Beijing, 2012, pp. 271-290.