DOI QR코드

DOI QR Code

FAP Inhibitors as Novel Small Molecules for Cancer Imaging using Radionuclide

  • Anvar Mirzaei (Innovation Center for Molecular Probe Development, Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital) ;
  • Jung-Joon Min (Innovation Center for Molecular Probe Development, Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital) ;
  • Dong-Yeon Kim (College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University)
  • Received : 2023.06.09
  • Accepted : 2023.06.19
  • Published : 2023.06.30

Abstract

Tumors are encircled by various non-cancerous cell types in the extracellular matrix, including fibroblasts, endothelial cells, immune cells, and cytokines. Fibroblasts are the most critical cells in the tumor stroma and play an important role in tumor development, which has been highlighted in some epithelial cancers. Many studies have shown a tight connection between cancerous cells and fibroblasts in the last decade. Regulatory factors secreted into the tumor environment by special fibroblast cells, cancer-associated fibroblasts (CAFs), play an important role in tumor and vessel development, metastasis, and therapy resistance. This review addresses the development of FAP inhibitors, emphasizing the first, second, and latest generations. First-generation inhibitors exhibit low selectivity and chemical stability, encouraging researchers to develop new scaffolds based on preclinical and clinical data. Second-generation enzymes such as UAMC-1110 demonstrated enhanced FAP binding and better selectivity. Targeted treatment and diagnostic imaging have become possible by further developing radionuclide-labeled fibroblast activation protein inhibitors (FAPIs). Although all three FAPIs (01, 02, and 04) showed excellent preclinical and clinical findings. The final optimization of these FAPI scaffolds resulted in FAPI-46 with the highest tumor-to-background ratio and better binding affinity.

Keywords

References

  1. Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T, Zare P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 2020;18(1):1-19. https://doi.org/10.1186/s12964-019-0473-9
  2. Zhao L, Chen J, Pang Y, Fu K, Shang Q, Wu H, Sun L, Lin Q, Chen H. Fibroblast activation protein-based theranostics in cancer research: A state-of-the-art review. Theranostics 2022;12(4):1557-69. https://doi.org/10.7150/thno.69475
  3. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013;19(11):1423-37. https://doi.org/10.1038/nm.3394
  4. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer 2016;16(9):582-98. https://doi.org/10.1038/nrc.2016.73
  5. Zhang C, Fei Y, Wang H, Hu S, Liu C, Hu R, Du Q. CAFs orchestrates tumor immune microenvironment-A new target in cancer therapy? Front Pharmacol 2023;14:1-18. https://doi.org/10.3389/fphar.2023.1113378
  6. Sandberg TP, Stuart MPME, Oosting J, Tollenaar RAEM, Sier CFM, Mesker WE. Increased expression of cancer-associated fibroblast markers at the invasive front and its association with tumor-stroma ratio in colorectal cancer. BMC Cancer 2019;19(1):1-9. https://doi.org/10.1186/s12885-018-5219-3
  7. Fitzgerald AA, Weiner LM. The role of fibroblast activation protein in health and malignancy. Cancer and Metastasis Reviews 2020;39:783-803. https://doi.org/10.1007/s10555-020-09909-3
  8. Monsky WL, Lin CY, Aoyama A, Kelly T, Akiyama SK, Mueller SC, Chen W-T. A potential marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma cells. Cancer Res 1994;54(21):5702-10.
  9. Goldstein LA, Ghersi G, Pineiro-Sanchez ML, Salamone M, Yeh Y, Flessate D, Chen W-T. Molecular cloning of seprase: A serine integral membrane protease from human melanoma. Biochim Biophys Acta - Mol Basis Dis 1997;1361(1):11-9. https://doi.org/10.1016/S0925-4439(97)00032-X
  10. Fitzgerald AA, Weiner LM. The role of fibroblast activation protein in health and malignancy. Cancer Metastasis Rev 2020;39(3):783-803. https://doi.org/10.1007/s10555-020-09909-3
  11. Hamson EJ, Keane FM, Tholen S, Schilling O, Gorrell MD. Understanding fibroblast activation protein (FAP): Substrates, activities, expression and targeting for cancer therapy. Proteomics - Clin Appl 2014;8(5-6):454-63. https://doi.org/10.1002/prca.201300095
  12. Aertgeerts K, Levin I, Shi L, Snell GP, Jennings A, Prasad GS, Zhang Y, Kraus ML, Salakian S, Sridhar V, Wijnands R, Tennant MG. Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein α. J Biol Chem 2005;280(20):19441-4. https://doi.org/10.1074/jbc.C500092200
  13. Meadows SA, Edosada CY, Mayeda M, Tran T, Quan C, Raab H, Wiesmann C, Wolf BB. Ala657 and conserved active site residues promote fibroblast activation protein endopeptidase activity via distinct mechanisms of transition state stabilization. Biochemistry 2007;46(15):4598-605. https://doi.org/10.1021/bi062227y
  14. Fan MH, Zhu Q, Li HH, Ra HJ, Majumdar S, Gulick DL, Jerome JA, Madsen DH, Christofidou-Solomidou M, Speicher DW, Bachovchin WW, Feghali-Bostwick C, Pure E. Fibroblast activation protein (FAP) accelerates collagen degradation and clearance from lungs in mice. J Biol Chem 2016;291(15):8070-89. https://doi.org/10.1074/jbc.M115.701433
  15. Levy MT, McCaughan GW, Abbott CA, Park JE, Cunningham AM, Muller E, Rettig WJ, Gorrell MD. Fibroblast activation protein: A cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis. Hepatology 1999;29(6):1768-78. https://doi.org/10.1002/hep.510290631
  16. Kennedy A, Dong H, Chen D, Chen WT. Elevation of seprase expression and promotion of an invasivt phenotype by collagenous matrices in ovarian tumor cells. Int J Cancer 2009;124(1):27-35. https://doi.org/10.1002/ijc.23871
  17. Lai D, Ma L, Wang F. Fibroblast activation protein regulates tumor-associated fibroblasts and epithelial ovarian cancer cells. Int J Oncol 2012;41(2):541-50. https://doi.org/10.3892/ijo.2012.1475
  18. Wang H, Wu Q, Liu Z, Luo X, Fan Y, Liu Y, Zhang Y, Hua S, Fu Q, Zhao M, Chen Y, Fang W, Lv X. Downregulation of FAP suppresses cell proliferation and metastasis through PTEN/PI3K/AKT and Ras-ERK signaling in oral squamous cell carcinoma. Cell Death Dis 2014;5(4):1-11. https://doi.org/10.1038/cddis.2014.122
  19. Chen P, Cescon M, Bonaldo P. Collagen VI in cancer and its biological mechanisms. Trends Mol Med 2013;19(7):410-7. https://doi.org/10.1016/j.molmed.2013.04.001
  20. Gok Yavuz B, Gunaydin G, Gedik ME, Kosemehmetoglu K, Karakoc D, Ozgur F, Guc D. Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1 + TAMs. Sci Rep 2019;9(1):1-15. https://doi.org/10.1038/s41598-018-37186-2
  21. Huang T, Guan X, Fu L. Therapeutic targeting of the crosstalk between cancer-associated fibroblasts and cancer stem cells. Am J Cancer Res 2019;9(9):1889-904.
  22. Bughda R, Dimou P, D'Souza RR, Klampatsa A. Fibroblast Activation Protein (FAP)-Targeted CAR-T Cells: Launching an Attack on Tumor Stroma. ImmunoTargets Ther 2021;10:313-23. https://doi.org/10.2147/ITT.S291767
  23. Connolly BA, Sanford DG, Chiluwal AK, Healey SE, Peters DE, Dimare MT, Wu W, Liu Y, Maw H, Zhou Y, Li Y, Jin Z, Sudmeier JL, Lai JH, Bachovchin WW. Dipeptide boronic acid inhibitors of dipeptidyl peptidase IV: Determinants of potency and in vivo efficacy and safety. J Med Chem 2008;51(19):6005-13. https://doi.org/10.1021/jm800390n
  24. Edosada CY, Quan C, Wiesmann C, Tran T, Sutherlin D, Reynolds M, Elliott JM, Raab H, Fairbrother W, Wolf BB. Selective inhibition of fibroblast activation protein protease based on dipeptide substrate specificity. J Biol Chem 2006;281(11):7437-44. https://doi.org/10.1074/jbc.M511112200
  25. Baker SJ, Ding CZ, Akama T, Zhang YK, Hernandez V, Xia Y. Therapeutic potential of boron-containing compounds. Future Med Chem 2009;1(7):1275-88. https://doi.org/10.4155/fmc.09.71
  26. Poplawski SE, Lai JH, Li Y, Jin Z, Liu Y, Wu W, Wu Y, Zhou Y, Sudmeier JL, Sanford DG, Bachovchin WW. Identification of selective and potent inhibitors of fibroblast activation protein and prolyl oligopeptidase. J Med Chem 2013;56(9):3467-77. https://doi.org/10.1021/jm400351a
  27. Moon ES, Elvas F, Vliegen G, De Lombaerde S, Vangestel C, De Bruycker S, Bracke A, Eppard E, Greifenstein L, Klasen B, Kramer V, Staelens S, De Meester I, Van der Veken P, Rosch F. Targeting fibroblast activation protein (FAP): next generation PET radiotracers using squaramide coupled bifunctional DOTA and DATA5m chelators. EJNMMI Radiopharm Chem 2020;5(1):1-20. https://doi.org/10.1186/s41181-019-0082-3
  28. Walsh MP, Duncan B, Larabee S, Krauss A, Davis JPE, Cui Y, Kim SY, Guimond M, Bachovchin W, Fry TJ. Val-BoroPro Accelerates T Cell Priming via Modulation of Dendritic Cell Trafficking Resulting in Complete Regression of Established Murine Tumors. PLoS One 2013;8(3):1-13. https://doi.org/10.1371/journal.pone.0058860
  29. Adams S, Miller GT, Jesson ML, Watanabe T, Jones B, Wallner BP. PT-100, a small molecule dipeptidyl peptidase inhibitor, has potent antitumor effects and augments antibody-mediated cytotoxicity via a novel immune mechanism. Cancer Res 2004;64(15):5471-80. https://doi.org/10.1158/0008-5472.CAN-04-0447
  30. Meany H, Balis FM, Aikin A, Whitcomb P, Murphy RF, Steinberg SM, Widemann BC, Fox E. Pediatric phase i trial design using maximum target inhibition as the primary endpoint. J Natl Cancer Inst 2010;102(12):909-12. https://doi.org/10.1093/jnci/djq174
  31. Jansen K, De Winter H, Heirbaut L, Cheng JD, Joossens J, Lambeir AM, De Meester I, Augustynsa K, Van der Veken P. Selective inhibitors of fibroblast activation protein (FAP) with a xanthine scaffold. Medchemcomm 2014;5(11):1700-7. https://doi.org/10.1039/C4MD00167B
  32. Ryabtsova O, Jansen K, Van Goethem S, Joossens J, Cheng JD, Lambeir AM, De Meester I, Augustyns K,Van der Veken P. Acylated Gly-(2-cyano)pyrrolidines as inhibitors of fibroblast activation protein (FAP) and the issue of FAP/prolyl oligopeptidase (PREP)-selectivity. Bioorganic Med Chem Lett 2012;22(10):3412-7. https://doi.org/10.1016/j.bmcl.2012.03.107
  33. Jansen K, Heirbaut L, Cheng JD, Joossens J, Ryabtsova O, Cos P, Maes L, Lambeir A-M, De Meester I, Augustyns K, Van der Veken P. Selective inhibitors of fibroblast activation protein (FAP) with a (4-quinolinoyl)-glycyl-2-cyanopyrrolidine scaffold. ACS Med Chem Lett 2013;4(5):491-6. https://doi.org/10.1021/ml300410d
  34. Jansen K, Heirbaut L, Verkerk R, Cheng JD, Joossens J, Cos P, Maes L, Lambeir A-M, De Meester I, Augustyns K, Van der Veken P. Extended structure-activity relationship and pharmacokinetic investigation of (4-quinolinoyl)glycyl-2-cyanopyrrolidine inhibitors tors of fibroblast activation protein (FAP). J Med Chem 2014;57(7):3053-74. https://doi.org/10.1021/jm500031w
  35. Loktev A, Lindner T, Mier W, Debus J, Altmann A, Jager D, Giesel F, Kratochwil C, Barthe P, Roumestand C, Haberkorn U. A tumor-imaging method targeting cancer-associated fibroblasts. J Nucl Med 2018;59(9):1423-9. https://doi.org/10.2967/jnumed.118.210435
  36. Lindner T, Loktev A, Altmann A, Giesel F, Kratochwil C, Debus J, Jager D, Mier W, Haberkorn U. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med 2018;59(9):1415-22. https://doi.org/10.2967/jnumed.118.210443
  37. Loktev A, Lindner T, Burger EM, Altmann A, Giesel F, Kratochwil C, Debus J, Marme F, Jager D, Mier W, Haberkorn U. Development of fibroblast activation protein-targeted radiotracers with improved tumor retention. J Nucl Med 2019;60(10):1421-9. https://doi.org/10.2967/jnumed.118.224469
  38. Kratochwil C, Flechsig P, Lindner T, Abderrahim L, Altmann A, Mier W, Adeberg S, Rathke H, Rohrich M, Winter H, Plinkert PK, Marme F, Lang M, Kauczor H-U, Jager D, Debus J, Haberkorn U , Giesel FL. 68Ga-FAPI PET/CT: Tracer uptake in 28 different kinds of cancer. J Nucl Med 2019;60(6):801-5. https://doi.org/10.2967/jnumed.119.227967
  39. Ferdinandus J, Kessler L, Hirmas N, Trajkovic-Arsic M, Hamacher R, Umutlu L, Nader M, Zarrad F, Weber M, Fendler WP. Equivalent tumor detection for early and late FAPI-46 PET acquisition. Eur J Nucl Med Mol Imaging 2021;48(10):3221-7. https://doi.org/10.1007/s00259-021-05266-7
  40. Giesel FL, Adeberg S, Syed M, Lindner T, Jimenez-Franco LD, Mavriopoulou E, Adeberg S, Rathke H, Rohrich M, Winter H, Plinkert PK, Marme F, Lang M, Kauczor H-U, Jager D, Debus J, Haberkorn U, Kratochwil C. FAPI-74 PET/CT using either 18F-AlF or cold-kit 68Ga labeling: Biodistribution, radiation dosimetry, and tumor delineation in lung cancer patients. J Nucl Med 2021;62(2):201-7. https://doi.org/10.2967/jnumed.120.245084
  41. Baum RP, Schuchardt C, Singh A, Chantadisai M, Robiller FC, Zhang J, Mueller D, Eismant A, Almaguel F, Zboralski D, Osterkamp F, Hoehne A, Reineke U, Smerling C, Kulkarni HR. Feasibility, Biodistribution, and Preliminary Dosimetry in Peptide-Targeted Radionuclide Therapy of Diverse Adenocarcinomas Using 177Lu-FAP-2286: First-in-Humans Results. J Nucl Med 2022;63(3):415-23. https://doi.org/10.2967/jnumed.120.259192
  42. Zboralski D, Hoehne A, Bredenbeck A, Schumann A, Nguyen M, Schneider E, Ungewiss J, Paschke M, Haase C, Hacht JL, Kwan T, Lin KK, Lenore J, Harding TC, Xiao J, Simmons AD, Mohan A-M, Beindorff N, Reineke U, Smerling C, Osterkamp F. Preclinical evaluation of FAP-2286 for fibroblast activation protein targeted radionuclide imaging and therapy. Eur J Nucl Med Mol Imaging 2022;49(11):3651-67. https://doi.org/10.1007/s00259-022-05842-5
  43. Wurzer A, Vagner A, Horvath D, Fellegi F, Wester HJ, Kalman FK, Notni J. Synthesis of symmetrical tetrameric conjugates of the radiolanthanide chelator DOTPI for application in endoradiotherapy by means of click chemistry. Front Chem 2018;6:1-11. https://doi.org/10.3389/fchem.2018.00001
  44. Zhao L, Niu B, Fang J, Pang Y, Li S, Xie C, Sun L, Zhang, X, Guo Z, Lin Q, Chen H. Synthesis, preclinical evaluation, and a pilot clinical PET imaging study of 68Ga-labeled FAPI dimer. J Nucl Med 2022;63(6):862-8. https://doi.org/10.2967/jnumed.121.263016
  45. Younis MH, Lan X, Cai W. PET with a 68Ga-labeled FAPI dimer: moving towards theranostics. J Nucl Med 2022;63(6):2-3. https://doi.org/10.2967/jnumed.121.263292
  46. Galbiati A, Zana A, Bocci M, Millul J, Elsayed A, Mock J, Neri D, Cazzamalli S. A Dimeric FAP-Targeting Small-Molecule Radioconjugate with High and Prolonged Tumor Uptake. J Nucl Med 2022;63(12):1852-8. https://doi.org/10.2967/jnumed.122.264036
  47. Martin M, Ballal S, Yadav MP, Bal C, Van Rymenant Y, De Loose J, Verhulst E, De Meester I, Van Der Veken P, Roesch F. Novel Generation of FAP Inhibitor-Based Homodimers for Improved Application in Radiotheranostics. Cancers (Basel) 2023;15(6):2-24. https://doi.org/10.3390/cancers15061889