DOI QR코드

DOI QR Code

Inverse decoupling sliding mode control for multilevel buck converters in low-power applications

  • Jiarong Wu (College of Electronic Information, Guangxi Minzu University) ;
  • Liping Luo (College of Electronic Information, Guangxi Minzu University) ;
  • Chunming Wen (College of Electronic Information, Guangxi Minzu University) ;
  • Qingyu Wang (College of Electronic Information, Guangxi Minzu University)
  • 투고 : 2022.11.21
  • 심사 : 2023.06.08
  • 발행 : 2023.08.20

초록

Multilevel buck converters are gradually gaining attention in low-power applications. To realize the decoupling of the flying capacitor voltage and the output voltage, this paper proposes an inverse decoupling sliding mode control approach. A nonlinear mathematical model of the multilevel buck converters is built. The reversibility of the model is analyzed based on the inverse system theory, and linearization and decoupling are achieved. In addition, multiple pseudo-linear subsystems are obtained. Then sliding mode controllers are designed to control the linear subsystems. Furthermore, the global asymptotic stability of the control system is verified using the Lyapunov theory, and the robustness of the closed-loop system is demonstrated. Simulation and experimental results show that the proposed approach provides a better dynamic response when compared with existing methods.

키워드

과제정보

This work was supported in part by National Natural Science Foundation of China (No. 61762011), and Introduction of Talent Project of Guangxi Minzu University (No. 2020KJQD25).

참고문헌

  1. Zhu, X., Jiang, L., Zhang, B., Jin, K.: The Resonant modular multilevel dc-dc converter adopting switched-inductor cells for high step-up ratio. IEEE. J Emerg. Sel. Top. Power Elect. 10(6), 6634-6647 (2022) https://doi.org/10.1109/JESTPE.2022.3157618
  2. Ding, X., Zhou, M., Cao, Y., Li, B., Sun, Y., Hu, X.: A high step-up coupled-inductor-integrated dc-dc multilevel boost converter with continuous input current. IEEE. J. Emerg. Sel. Top. Power Elect. 10(6), 7346-7360 (2022) https://doi.org/10.1109/JESTPE.2022.3184699
  3. Arai, T., Sekiguchi, K., Mochikawa, H., Sano, K., Fujita, H.: Evaluation of required energy storage in the neutral-point-clamped modular multilevel converter for downsizing low-voltage grid converters. IEEE. Trans. Ind. Elect. 36(6), 6774-6786 (2021) https://doi.org/10.1109/TPEL.2020.3037936
  4. Babaei, A., Kafashan, I., Abrishamifar, A.: An optimized zero-current, zero-voltage, and three-level dc-dc converter. IEEE. Can. J. Elect. Comp. Eng. 44(2), 216-222 (2021) https://doi.org/10.1109/ICJECE.2020.3037638
  5. Bonanno, G., Corradini, L.: Digital predictive current-mode control of three-level fying capacitor buck converters. IEEE. Trans. Ind. Elect. 36(4), 4697-4710 (2021)
  6. Tang, S., Wang, J., Zheng, R., et al.: Detection and identification of power switch failures using discrete fourier transform for DC-DC flying capacitor buck converters. IEEE. J. Emerg. Sel. Top. Power Elect. 9(4), 4062-4071 (2021) https://doi.org/10.1109/JESTPE.2020.3012201
  7. Gray, P.A., Lehn, P.W., Yakop, N.: A modular multilevel dc-dc converter with flying capacitor converter like properties. IEEE. Trans. Ind. Elect. 69(7), 6774-6783 (2022) https://doi.org/10.1109/TIE.2021.3099229
  8. Stillwell, A., Candan, E., Pilawa-Podgurski, R.C.N.: Active voltage balancing in flying capacitor multi-level converters with valley current detection and constant effective duty cycle control. IEEE. Trans. Ind. Elect. 34(11), 11429-11441 (2019)
  9. Pan, S., Mok, P.K.T.: A 25 MHz fast transient adaptive-on/of-time controlled three-level buck converter. IEEE. Trans. Circ. Syst. I Reg. Pap. 69(6), 2601-2613 (2022) https://doi.org/10.1109/TCSI.2022.3151634
  10. Jung, W., Shin, S.E., Hong, S.W., et al.: Dual-path three-level buck converter with loop-free autocalibration for flying capacitor self-balancing. IEEE. Trans. Ind. Elect. 36(1), 51-55 (2021)
  11. Ye, Z., Lei, Y., Liao, Z., Pilawa-Podgurski, R.C.N.: Investigation of capacitor voltage balancing in practical implementations of fying capacitor multilevel converters. IEEE. Trans. Ind. Elect. 37(3), 2921-2935 (2022) https://doi.org/10.1109/TPEL.2021.3119409
  12. Afkar, M., Gavagsaz-Ghoachani, R., Phattanasak, M., Martin, J.-P., Pierfederici, S.: Proposed system based on a three-level boost converter to mitigate voltage imbalance in photovoltaic power generation systems. IEEE. Trans. Ind. Elect. 37(2), 2264-2282 (2022)
  13. Ling, R., Shu, Z., Hu, Q., Song, Y.D.: Second-order sliding-mode controlled three-level buck DC-DC converters. IEEE. Trans. Ind. Elect. 65(1), 898-906 (2018) https://doi.org/10.1109/TIE.2017.2750610
  14. Gray, P.A., Lehn, P.W.: Discontinuous conduction mode operation of the current-shaping modular multilevel dc-dc converter. IEEE. J. Emerg. Sel. Top. Power. Elect. 10(2), 2233-2244 (2022) https://doi.org/10.1109/JESTPE.2020.3013156
  15. Zhang, Y.Y., Xin-Bo, R.: Novel control strategy for the flying capacitor voltage of the multilevel converter. Proc. Csee. 24(08), 37-41 (2004)
  16. Chen, H., Lu, C., Lien, W., Chen, T.: Active capacitor voltage balancing control for three-level flying capacitor boost converter based on average-behavior circuit model. IEEE. Trans. Ind. Elect. 55(2), 1628-1638 (2019) https://doi.org/10.1109/TIA.2018.2876031
  17. Sun, R., Wu, X., Li, W., Pei, C.: Equivalent sliding mode control for multi-level buck converter. IEEE International Conference on Aircraft Utility Systems. pp. 460-465 (2016)
  18. Lu, C.Y., Lin, D.H., Chen, H.C.: Decoupled design of voltage regulating and balancing controls for four-level flying capacitor converter. IEEE. Trans. Ind. Elect. 68(12), 12152-12161 (2021) https://doi.org/10.1109/TIE.2020.3047039
  19. Cai, P., Wu, X., Sun, R., Wu. Y.: Exact feedback linearization of general four-level buck DC-DC converters. 29th Chinese Control and Decision Conference (CCDC) pp. 4638-4643 (2017)
  20. Yang, S., Wang, P., Tang, Y.: Feedback linearization-based current control strategy for modular multilevel converters. IEEE. Trans. Power. Elect. 33(1), 161-174 (2018) https://doi.org/10.1109/TPEL.2017.2662062
  21. Wu, J., Lu, Y.: Decoupling and optimal control of multilevel buck DC-DC converters with inverse system theory. IEEE Trans. Ind. Elect. 67(9), 7861-7870 (2020) https://doi.org/10.1109/TIE.2019.2942565
  22. Judewicz, M.G., Gonzalez, S.A., Gelos, E.M., Fische, J.R., Carrica, D.O.: Exact feedback linearization control of three-level boost converters. IEEE. Trans. Indus. Elect. 70(2), 1916-1926 (2023)
  23. V. Dargahi, A. K., Sadigh, K., Corzine.: New flying-capacitor-based multilevel converter with optimized number of switches and capacitors controlled with a new logic-form-equation based active voltage balancing technique. Proc. IEEE Appl. Power Electron. Conf. Expo. pp. 1481-1488 (2016)
  24. Li, C., Feng, K.: Inverse system method for multivariable nonlinear control. Tsinghua University Press, China (1991)
  25. Peng, N., Li, S., C. Dai, Q. Xu.: Sliding mode control for nanomanipulation system with disturbance compensation based on inverse system decoupling algorithm. 2021 IEEE International Conference on Networking, Sensing and Control (ICNSC), Xiamen, China (2021)
  26. Singh, S., Kumar, V., Fulwani, D.: Mitigation of destabilising effect of CPLs in island DC micro-grid using non-linear control. IET. Power. Electron. 10(3), 387-397 (2017) https://doi.org/10.1049/iet-pel.2015.0520
  27. Bacha, S., Munteanu, I., Bratcu, A.I., et al.: Power electronic converters modeling and control-advanced textbooks in control and signal processing. Springer, London (2014)