DOI QR코드

DOI QR Code

Bi-directional non-isolated impedance converter for extra low-voltage battery system safety

  • Aditya Narula (Department of Electrical Engineering, Delhi Technological University) ;
  • Vishal Verma (Department of Electrical Engineering, Delhi Technological University)
  • Received : 2022.08.28
  • Accepted : 2023.02.22
  • Published : 2023.08.20

Abstract

For bi-directional power converters, modularity, low leakage currents, low ripple, and a simple bi-directional control that utilizes storage effectively with low-voltage stress are required. This paper proposes a new configuration for converters that meet all of the above requirements to realize a robust converter for both vehicle to low-voltage DC microgrid (V2G) and low-voltage DC microgrid (LVDC-MG) to vehicle (G2V) technologies. The proposed power-dense modular-impedance source configuration employs coupled inductors, which ensures a power-dense modular architecture configuration with low current ripple and negligible leakage currents. The new auxiliary boost capability of the impedance source provides a wide operating range. A unified bi-directional control algorithm enables operation to/from battery stacks at customized rates, based on the state of charge (SoC). Based on the requirements of the control scheme, this automatically invokes the use of the impedance network to cater to the low charge conditions of the battery stack or the transient conditions on the LVDC microgrid. The proposed bi-directional converter is tested through both simulations and experimental studies on a developed prototype to confirm high efficiency operations over a wide range of duty cycles.

Keywords

References

  1. Ipakchi, A., Albuyeh, F.: Grid of the future. IEEE Power Energy Mag. 7(2), 52-62 (2009) https://doi.org/10.1109/MPE.2008.931384
  2. Madduri, P.A., Poon, J., Rosa, J., Podolsky, M., Brewer, E.A., Sanders, S.R.: Scalable DC microgrids for rural electrification in emerging regions. IEEE J. Emerg. Sel. Topics Power Electron. 4(4), 1195-1205 (2016) https://doi.org/10.1109/JESTPE.2016.2570229
  3. Lu, D.D.C., Agelidis, V.G.: Photovoltaic-battery-powered DC bus system for common portable electronic devices. IEEE Trans. Power Electron. 24(3), 849-855 (2009) https://doi.org/10.1109/TPEL.2008.2011131
  4. Karshenas, H.R., Bakhshai, A., Safaee, A., Daneshpajooh, H., Jain, P.: Bidirectional DC-DC converters for energy storage systems, pp. 161-178. In Tech, Rijeka, Croatia (2011)
  5. Kazimierczuk, M.K., Vuong, D.Q., Nguyen, B.T., Weimer, J.A.: Topologies of bidirectional PWM DC-DC power converters. In: Proceedings of the IEEE National Aerospace and Electronics Conference, pp. 435-441. IEEE (1993)
  6. Li, W., He, X.: Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications. IEEE Trans. Industr. Electron. 58(4), 1239-1250 (2011) https://doi.org/10.1109/TIE.2010.2049715
  7. Forouzesh, M., Siwakoti, Y.P., Gorji, S.A., Blaabjerg, F., Lehman, B.: Step-Up DC-DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans. Power Electron. 32(12), 9143-9178 (2017) https://doi.org/10.1109/TPEL.2017.2652318
  8. Abhishek, A., Ranjan, A., Singh, B., Akbar, S.A.: Performance evaluation of a 500 W bidirectional converter for DC microgrid. In: 2022 IEEE international conference on power electronics, smart grid, and renewable energy (PESGRE), pp. 1-6. IEEE (2022). https://doi.org/10.1109/PESGRE52268.2022.9715753
  9. Inoue, S., Akagi, H.: A bidirectional DC-DC converter for an energy storage system with galvanic isolation. IEEE Trans. Power Electron. 22(6), 2299-2306 (2007) https://doi.org/10.1109/TPEL.2007.909248
  10. Xue, L., Shen, Z., Boroyevich, D., Mattavelli, P., Diaz, D.: Dual active bridge-based battery charger for plug-in hybrid electric vehicle with charging current containing low frequency ripple. IEEE Trans. Power Electron. 30(12), 7299-7307 (2015) https://doi.org/10.1109/TPEL.2015.2413815
  11. Chen, W., RongandZ, P., Lu: Snubber less bi directional DC-DC converter with new CLLC resonant tank featuring minimized switching loss. IEEE Trans. Ind. Electron. 57(9), 3075-3086 (2010) https://doi.org/10.1109/TIE.2009.2037099
  12. Jiang, W., Fahimi, B.: Multiport power electronic interface-concept, modeling, and design. IEEE Trans. Power Electron. 26(7), 1890-1900 (2011) https://doi.org/10.1109/TPEL.2010.2093583
  13. Suresh, K., et al.: A multifunctional non-isolated dual input-dual output converter for electric vehicle applications. IEEE Access 9, 64445-64460 (2021). https://doi.org/10.1109/ACCESS.2021.3074581
  14. Khan, M.Y.A., Liu, H., Ur Rehman, N.: Design of a multiport bidirectional DC-DC converter for low power PV applications. In: 2021 International conference on emerging power technologies (ICEPT), pp. 1-6. IEEE (2021). https://doi.org/10.1109/ICEPT51706.2021.9435425
  15. Wang, Y., Han, F., Yang, L., Xu, R., Liu, R.: A three-port bidirectional multi-element resonant converter with decoupled power flow management for hybrid energy storage systems. IEEE Access 6, 61331-61341 (2018). https://doi.org/10.1109/ACCESS.2018.2872683
  16. Qian, W., Peng, F.Z., Cha, H.: Trans-Z-source inverters. IEEE Trans. Power Electron. 26(12), 3453-3463 (2011) https://doi.org/10.1109/TPEL.2011.2122309
  17. Vinnikov, D., Roasto, I.: Quasi-Z-source-based isolated DC/DC converters for distributed power generation. IEEE Trans. Industr. Electron. 58(1), 192-201 (2011) https://doi.org/10.1109/TIE.2009.2039460
  18. Siwakoti, Y.P., Peng, F.Z., Blaabjerg, F., Loh, P.C., Town, G.E.: Impedance-source networks for electric power conversion part i: a topological review. IEEE Trans. Power Electron. 30(2), 699-716 (2015) https://doi.org/10.1109/TPEL.2014.2313746