DOI QR코드

DOI QR Code

Epigallocatechin-3-gallate prior to composite resin in abfraction lesions: a split-mouth randomized clinical trial

  • Received : 2022.10.09
  • Accepted : 2022.12.01
  • Published : 2023.05.31

Abstract

Objectives: Natural extracts have been investigated as a biomimetic strategy to mechanically strengthen the collagen network and control the biodegradation of extracellular matrix. This study evaluated the effect of epigallocatechin-3-gallate (EGCG) on abfraction lesions prior to the composite resin. Materials and Methods: The sample consisted of 30 patients (aged between 28 and 60 years) with abfraction lesions located in 2 homologous premolars. The teeth were randomly assigned according to dentin treatment: 0.02% EGCG solution or distilled water (control). After enamel acid etching, the solutions were applied immediately for 1 minute. The teeth were restored with Universal Adhesive (3M) and Filtek Z350 XT (3M). Analyzes were done by 2 independent examiners using modified USPHS (retention, secondary caries, marginal adaptation, and postoperative sensitivity) and photographic (color, marginal pigmentation, and anatomical form) criteria at baseline (7 days) and final (18 months). The data analysis used Friedman and Wilcoxon signed-rank tests (α = 0.05). Results: At baseline, all restorations were evaluated as alpha for all criteria. After 18 months, restorations were evaluated as alpha for secondary caries, color, and marginal pigmentation. There was significant difference between baseline and 18 months (p = 0.009) for marginal adaptation and postoperative sensitivity (p = 0.029), but no significant difference were verified between treatments (p = 0.433). The EGCG group had a restoration retention rate of 93.3%, while the control group had 96.7%. Conclusions: The application of EGCG solution on abfraction lesions did not significantly influence the survival of the restorations based on clinical and photographic criteria.

Keywords

Acknowledgement

The authors would like to thank the Brazilian National Council for Scientific and Technological Development (CNPq) (Processo: 304366/2020-0).

References

  1. Francisconi LF, Graeff MS, Martins LM, Franco EB, Mondelli RF, Francisconi PA, Pereira JC. The effects of occlusal loading on the margins of cervical restorations. J Am Dent Assoc 2009;140:1275-1282. https://doi.org/10.14219/jada.archive.2009.0051
  2. Badavannavar AN, Ajari S, Nayak KU, Khijmatgar S. Abfraction: Etiopathogenesis, clinical aspect, and diagnostic-treatment modalities: a review. Indian J Dent Res 2020;31:305-311. https://doi.org/10.4103/ijdr.IJDR_863_18
  3. Michael JA, Townsend GC, Greenwood LF, Kaidonis JA. Abfraction: separating fact from fiction. Aust Dent J 2009;54:2-8. https://doi.org/10.1111/j.1834-7819.2008.01080.x
  4. Peumans M, Politano G, Van Meerbeek B. Treatment of noncarious cervical lesions: when, why, and how. Int J Esthet Dent 2020;15:16-42.
  5. Rees JS, Hammadeh M. Undermining of enamel as a mechanism of abfraction lesion formation: a finite element study. Eur J Oral Sci 2004;112:347-352. https://doi.org/10.1111/j.1600-0722.2004.00143.x
  6. Romeed SA, Malik R, Dunne SM. Stress analysis of occlusal forces in canine teeth and their role in the development of non-carious cervical lesions: abfraction. Int J Dent 2012;2012:234845.
  7. Rusu Olaru A, Popescu MR, Dragomir LP, Rauten AM. Clinical study on abfraction lesions in occlusal dysfunction. Curr Health Sci J 2019;45:390-397.
  8. Wood I, Jawad Z, Paisley C, Brunton P. Non-carious cervical tooth surface loss: a literature review. J Dent 2008;36:759-766. https://doi.org/10.1016/j.jdent.2008.06.004
  9. Reyes-Gasga J, Galindo-Mentle M, Bres E, Vargas-Becerril N, Orozco E, Rodriguez-Gomez A, Garcia-Garcia R. Detection of the piezoelectricity effect in nanocrystals from human teeth. J Phys Chem Solids 2020;136:109140.
  10. Grippo JO, Chaiyabutr Y, Kois JC. Effects of cyclic fatigue stress-biocorrosion on noncarious cervical lesions. J Esthet Restor Dent 2013;25:265-272. https://doi.org/10.1111/jerd.12024
  11. Matuda LS, Marchi GM, Aguiar TR, Leme AA, Ambrosano GM, Bedran-Russo AK. Dental adhesives and strategies for displacement of water/solvents from collagen fibrils. Dent Mater 2016;32:723-731. https://doi.org/10.1016/j.dental.2016.03.009
  12. Yiu CK, King NM, Pashley DH, Suh BI, Carvalho RM, Carrilho MR, Tay FR. Effect of resin hydrophilicity and water storage on resin strength. Biomaterials 2004;25:5789-5796. https://doi.org/10.1016/j.biomaterials.2004.01.026
  13. Prakki A, Xiong Y, Bortolatto J, Goncalves LL, Bafail A, Anderson G, Stavroullakis AT. Functionalized epigallocatechin gallate copolymer inhibit dentin matrices degradation: mechanical, solubilized telopeptide and proteomic assays. Dent Mater 2018;34:1625-1633. https://doi.org/10.1016/j.dental.2018.08.297
  14. Breschi L, Mazzoni A, Ruggeri A, Cadenaro M, Di Lenarda R, De Stefano Dorigo E. Dental adhesion review: aging and stability of the bonded interface. Dent Mater 2008;24:90-101. https://doi.org/10.1016/j.dental.2007.02.009
  15. Zhang Z, Yu J, Yao C, Yang H, Huang C. New perspective to improve dentin-adhesive interface stability by using dimethyl sulfoxide wet-bonding and epigallocatechin-3-gallate. Dent Mater 2020;36:1452-1463. https://doi.org/10.1016/j.dental.2020.08.009
  16. Kato MT, Leite AL, Hannas AR, Calabria MP, Magalhaes AC, Pereira JC, Buzalaf MA. Impact of protease inhibitors on dentin matrix degradation by collagenase. J Dent Res 2012;91:1119-1123. https://doi.org/10.1177/0022034512455801
  17. Vidal CM, Aguiar TR, Phansalkar R, McAlpine JB, Napolitano JG, Chen SN, Araujo LS, Pauli GF, BedranRusso A. Galloyl moieties enhance the dentin biomodification potential of plant-derived catechins. Acta Biomater 2014;10:3288-3294. https://doi.org/10.1016/j.actbio.2014.03.036
  18. Zarella BL, Buzalaf MA, Kato MT, Hannas AR, Salo T, Tjaderhane L, Prakki A. Cytotoxicity and effect on protease activity of copolymer extracts containing catechin. Arch Oral Biol 2016;65:66-71. https://doi.org/10.1016/j.archoralbio.2016.01.017
  19. Mankovskaia A, Levesque CM, Prakki A. Catechin-incorporated dental copolymers inhibit growth of Streptococcus mutans. J Appl Oral Sci 2013;21:203-207. https://doi.org/10.1590/1678-7757201302430
  20. Santiago SL, Osorio R, Neri JR, Carvalho RM, Toledano M. Effect of the flavonoid epigallocatechin-3-gallate on resin-dentin bond strength. J Adhes Dent 2013;15:535-540.
  21. Du X, Huang X, Huang C, Wang Y, Zhang Y. Epigallocatechin-3-gallate (EGCG) enhances the therapeutic activity of a dental adhesive. J Dent 2012;40:485-492. https://doi.org/10.1016/j.jdent.2012.02.013
  22. Hiraishi N, Sono R, Sofiqul I, Yiu C, Nakamura H, Otsuki M, Takatsuka T, Tagami J. In vitro evaluation of plant-derived agents to preserve dentin collagen. Dent Mater 2013;29:1048-1054. https://doi.org/10.1016/j.dental.2013.07.015
  23. Jackson JK, Zhao J, Wong W, Burt HM. The inhibition of collagenase induced degradation of collagen by the galloyl-containing polyphenols tannic acid, epigallocatechin gallate and epicatechin gallate. J Mater Sci Mater Med 2010;21:1435-1443. https://doi.org/10.1007/s10856-010-4019-3
  24. de Souza JC, Tedesco AC, Takahashi LA, Curylofo-Zotti FA, Souza-Gabriel AE, Corona SA. Influence of nanoparticulated chitosan on the biomodification of eroded dentin: clinical and photographic longitudinal analysis of restorations. J Mater Sci Mater Med 2021;32:11.
  25. Lynch CD, O'Sullivan VR, Dockery P, McGillycuddy CT, Sloan AJ. Hunter-Schreger Band patterns in human tooth enamel. J Anat 2010;217:106-115. https://doi.org/10.1111/j.1469-7580.2010.01255.x
  26. De Moraes MD, Passos VF, Padovani GC, Bezerra LC, Vasconcelos IM, Santiago SL. Protective effect of green tea catechins on eroded human dentin: an in vitro/in situ study. Braz Oral Res 2021;35:e108.
  27. Costa CA, Passos VF, Neri JR, Mendonca JS, Santiago SL. Effect of metalloproteinase inhibitors on bond strength of a self-etching adhesive on erosively demineralized dentin. J Adhes Dent 2019;21:337-344.
  28. Neri JR, Yamauti M, da Silveira FD, Mendonca JS, de Carvalho RM, Santiago SL. Influence of dentin biomodification with epigallocatechin-3-gallate on the bond strength of self-etch adhesive: twelve-month results. Int J Adhes Adhes 2016;71:81-86. https://doi.org/10.1016/j.ijadhadh.2016.08.007
  29. Epasinghe DJ, Yiu CK, Burrow MF, Tay FR, King NM. Effect of proanthocyanidin incorporation into dental adhesive resin on resin-dentine bond strength. J Dent 2012;40:173-180. https://doi.org/10.1016/j.jdent.2011.11.013
  30. Hardan L, Daood U, Bourgi R, Cuevas-Suarez CE, Devoto W, Zarow M, Jakubowicz N, ZamarripaCalderon JE, Radwanski M, Orsini G, Lukomska-Szymanska M. Effect of collagen crosslinkers on dentin bond strength of adhesive systems: a systematic review and meta-analysis. Cells 2022;11:2417.
  31. de Souza LC, Rodrigues NS, Cunha DA, Feitosa VP, Santiago SL, Reis A, Loguercio AD, Matos TP, Saboia VP, Perdigao J. Two-year clinical evaluation of proanthocyanidins added to a two-step etch-and-rinse adhesive. J Dent 2019;81:7-16. https://doi.org/10.1016/j.jdent.2018.12.012
  32. Yang H, Guo J, Deng D, Chen Z, Huang C. Effect of adjunctive application of epigallocatechin-3-gallate and ethanol-wet bonding on adhesive-dentin bonds. J Dent 2016;44:44-49. https://doi.org/10.1016/j.jdent.2015.12.001
  33. Costa C, Albuquerque N, Mendonca JS, Loguercio AD, Saboia V, Santiago SL. Catechin-based dentin pretreatment and the clinical performance of a universal adhesive: a two-year randomized clinical trial. Oper Dent 2020;45:473-483. https://doi.org/10.2341/19-088-C
  34. Souza-Junior EJ, Prieto LT, Araujo CT, Paulillo LA. Selective enamel etching: effect on marginal adaptation of self-etch LED-cured bond systems in aged Class I composite restorations. Oper Dent 2012;37:195-204. https://doi.org/10.2341/11-184L
  35. Carvalho RV, Ogliari FA, de Souza AP, Silva AF, Petzhold CL, Line SR, Piva E, Etges A. 2-hydroxyethyl methacrylate as an inhibitor of matrix metalloproteinase-2. Eur J Oral Sci 2009;117:64-67. https://doi.org/10.1111/j.1600-0722.2008.00591.x
  36. Gerhardt KM, Oliveira CA, Franca FM, Basting RT, Turssi CP, Amaral FL. Effect of epigallocatechin gallate, green tea extract and chlorhexidine application on long-term bond strength of self-etch adhesive to dentin. Int J Adhes Adhes 2016;71:23-27. https://doi.org/10.1016/j.ijadhadh.2016.08.005
  37. Fialho MP, Hass V, Nogueira RP, Franca FM, Turssi CP, Basting RT, Amaral FL. Effect of epigallocatechin-3- gallate solutions on bond durability at the adhesive interface in caries-affected dentin. J Mech Behav Biomed Mater 2019;91:398-405. https://doi.org/10.1016/j.jmbbm.2018.11.022
  38. Nivedita L, Prakash V, Mitthra S, Pearlin Mary NS, Venkatesh A, Subbiya A. Evaluation of the effect of collagen stabilizing agents like chitosan and proanthocyanidin on the shear bond strength to dentin and microleakage of resin composite at enamel and cemental walls: an in vitro study. J Conserv Dent 2019;22:483-489. https://doi.org/10.4103/JCD.JCD_195_20
  39. Srinivasulu S, Vidhya S, Sujatha M, Mahalaxmi S. Shear bond strength of composite to deep dentin after treatment with two different collagen cross-linking agents at varying time intervals. Oper Dent 2012;37:485-491. https://doi.org/10.2341/11-232-L