Acknowledgement
이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2019R1F1A1059036).
References
- J. Song, H. Takakura, and Y. Kwon, "A generalized feature extraction scheme to detect 0-day attacks via IDS alerts," International Symposium on Applications and the Internet, 2008. https://doi.org/10.1109/SAINT.2008.85
- E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, "A geometric framework for unsupervised anomaly detection," Applications of Data Mining in Computer Security, Vol.6, pp.77-101, 2002. Springer, Boston, MA, https://doi.org/10.1007/978-1-4615-0953-0_4
- S. Selva Birunda and R. Kanniga Devi, "A review on word embedding techniques for text classification," Innovative Data Communication Technologies and Application, Vol. 59, pp.267-281, Springer, Singapore, 2021. https://doi.org/10.1007/978-981-15-9651-3_23
- T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of word representations in vector space," arXiv preprint arXiv:1301.3781v3, 2013. https://doi.org/10.48550/arXiv.1301.3781
- M. A. Kramer, "Nonlinear principal component analysis using autoassociative neural networks," AIChE Journal, Vol.37, No.2, pp.233-243, 1991. https://doi.org/10.1002/aic.690370209
- F. T. Liu, K. M. Ting, and Z. Zhou, "Isolation forest," Eighth IEEE International Conference on Data Mining, pp.413-422, 2008. Pisa, https://doi.org/10.1109/ICDM.2008.17
- W. Haider, J. Hua, J. Slaya, B. P. Turnbull, and Y. Xieb, "Generating realistic intrusion detection system dataset based on fuzzy qualitative modeling," Journal of Network and Computer Applications, Vol.87, No.1, pp.185-192, 2017. https://doi.org/10.1016/j.jnca.2017.03.018
- M. M. Breunig et al., "LOF: Identifying density-based local outliers," Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas Texas, USA, 2000. https://doi.org/10.1145/342009.335388
- Y. Chen, X. S. Zhou, and T. S. Huang, "One-class SVM for learning in image retrieval," Proceedings of International Conference on Image Processing, Vol.1, pp.34-37, 2001. https://doi.org/10.1109/ICIP.2001.958946
- L. Ruff et al., "Deep one-class classification," Proceedings of the 35th International Conference on Machine Learning (PMLR), Vol.80, pp.4393-4402, 2018. https://proceedings.mlr.press/v80/ruff18a.html
- C. Baur et al., "Deep autoencoding models for unsupervised anomaly segmentation in brain MR images," International MICCAI Brainlesion Workshop, pp.161-169, Granada Spain, 2018. https://doi.org/10.1007/978-3-030-11723-8_16
- P. Bergmann et al., "Improving unsupervised defect segmentation by applying structural similarity to autoencoders," arXiv preprint arXiv:1807.02011v3, 2018. https://doi.org/10.48550/arXiv.1807.02011
- S. Pidhorskyi, R. Almohsen, D. A. Adjeroh, and G. Doretto, "Generative probabilistic novelty detection with adversarial autoencoders," Proceedings of the 32nd International Conference on Neural Information Processing Systems (NeurIPS 2018), pp.6823-6834, Montreal Canada, Dec. 2018. https://dl.acm.org/doi/10.5555/3327757.3327787
- T. Kieu, B. Yang, C. Guo, and C. S. Jensen, "Outlier detection for time series with recurrent autoencoder ensembles," Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI-19), pp.2725-2732, Macao China, Aug. 2019. https://doi.org/10.24963/ijcai.2019/378
- K. Sadaf and J. Sultana, "Intrusion detection based on autoencoder and isolation forest in fog computing," IEEE Access, Vol.8, pp.167059-167068, 2020. https://doi.org/10.1109/ACCESS.2020.3022855
- G. Andresini, A. Appice, N. D. Mauro, C. Loglisci, and D. Malerba, "Multi-channel deep feature learning for intrusion detection," IEEE Access, Vol.8, pp.53346-53359, 2020. https://doi.org/10.1109/ACCESS.2020.2980937
- C. Kim, M. Jang, S. Seo, K. Park, and P. Kang, "Intrusion detection based on sequential information preserving log embedding methods and anomaly detection algorithms," IEEE Access, Vol.9, pp.58088-58101, 2021. https://doi.org/10.1109/ACCESS.2021.3071763
- S. Ranga and M. N. Guptha, "Log anomaly detection using sequential convolution neural networks and Dual-LSTM model," SN Computer Science, Vol.4, No.3, 2023. https://doi.org/10.1007/s42979-023-01676-6
- W. Tang, C. M. Vian, Z. Tang, and B. Yang, "Anomaly detection of core failures in die casting X-ray inspection images using a convolutional autoencoder," Machine Vision and Application, Vol.32, No.4, pp.1-17, 2021. https://doi.org/10.1007/s00138-021-01226-1
- M. S. Elsayed et al., "Network anomaly detection using LSTM based autoencoder," Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks, pp.37-45, Alicante, Spain, Nov. 2020. https://doi.org/10.1145/3416013.3426457
- M. A. Kabir and X. Luo, "Unsupervised learning for network flow based anomaly detection in the era of deep learning," IEEE Sixth International Conference on Big Data Computing Service and Applications (BigDataService), pp.165-168, Oxford, UK, 2020. https://doi.org/10.1109/BigDataService49289.2020.00032
- M. Aljanabi et al., "Intrusion detection systems, issues, challenges, and needs," International Journal of Computational Intelligence Systems, Vol.14, No.1, pp.560-571, 2021. https://doi.org/10.2991/ijcis.d.210105.001
- J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical evaluation of gated recurrent neural networks on sequence modeling," Presented in NIPS 2014 Deep Learning and Representation Learning Workshop, arXiv preprint arXiv: 1412.3555, 2014. https://doi.org/10.48550/arXiv.1412.3555
- S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, Vol.9, No.8, pp.1735-1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735
- R. Chalapathy, A. K. Menon, and S. Chawla, "Anomaly detection using one-class neural networks," arXiv preprint arXiv:1802.06360, 2019. https://doi.org/10.48550/arXiv.1802.0636
- A. Vaswani et al., "Attention is all you need," 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 2017. https://doi.org/10.48550/arXiv.1706.03762