DOI QR코드

DOI QR Code

오일 추출에 의해 물성이 향상된 커피 찌꺼기 활성탄소기반 슈퍼커패시터 제조 및 그 전기화학적 특성

Preparation of Coffee Grounds Activated Carbon-based Supercapacitors with Enhanced Properties by Oil Extraction and Their Electrochemical Properties

  • 김경수 (충남대학교 응용화학공학과) ;
  • 민충기 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Kyung Soo Kim (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Chung Gi Min (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Young-Seak Lee (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 투고 : 2023.06.08
  • 심사 : 2023.07.05
  • 발행 : 2023.08.10

초록

바이오 폐기물의 활용도를 높이기 위해 오일 추출 및 KOH 활성화를 통해 제조된 커피 찌꺼기 기반 활성탄소를 이용하여 슈퍼커패시터 성능을 고찰하였다. 커피 찌꺼기에 오일 추출은 노말헥산 및 아이소프로필 알코올 용매를 사용한 용매 추출로 수행되었다. 오일 추출 후 KOH 활성화를 통해 제조된 AC_CG-Hexane/IPA는 오일 추출 없이 KOH 활성화로만 제조된 AC_CG보다 비표면적은 최대 16% 및 평균 기공 크기는 최대 2.54 nm로 증가되었다. 또한, 커피 찌꺼기의 오일 추출함에 따라 제조된 활성탄소의 pyrrolic/pyridinic N 작용기는 증가되었다. 순환전압전류법 측정 실험으로부터, 10 mV/s의 전압 주사 속도에서 AC_CG-Hexane/IPA의 비정전용량은 133 F/g으로, AC_CG (100 F/g)의 비정전용량에 비해 33% 향상된 값을 나타냈다. 그 결과 커피 찌꺼기의 오일 추출을 통한 성분 제거를 통하여 활성탄소의 메조기공의 크기 및 비표면적의 부피 향상과 pyrrolic/pyridinic N 작용기가 전기화학적 활성으로 전기전도도를 증가로 인한 시너지 효과로 향상된 전기화학적 특성을 나타낸다. 본 연구에서는 바이오 폐기물인 커피 찌꺼기의 재활용 방법 및 적용에 대해 제시하였으며, 고성능 슈퍼커패시터의 전극 재료로 활용할 수 있는 효율적인 방법 중 하나라고 판단된다.

Capacitor performance was considered using coffee grounds-based activated carbon produced through oil extraction and KOH activation to increase the utilization of boiwaste. Oil extraction from coffee grounds was performed by solvent extraction using n-Hexane and isopropyl alcohol solvents. The AC_CG-Hexane/IPA produced by KOH activation after oil extraction increased the specific surface area by up to 16% and the average pore size by up to 2.54 nm compared to AC_CG produced only by KOH activation without oil extraction. In addition, the pyrrolic/pyridinic N functional group of the prepared activated carbon increased with the extraction of oil from coffee grounds. In the cyclic voltage-current method measurement experiment, the specific capacitance of AC_CG-Hexane/IPA at a voltage scanning speed of 10 mV/s is 133 F/g, which is 33% improved compared to the amorphous capacity of AC_CG (100 F/g). The results show improved electrochemical properties by improving the size and specific surface area of the mesopores of activated carbon by removing components from coffee grounds oil and synergistic effects by increasing electrical conductivity with pyrrolic/pyridinic N functional groups. In this study, the recycling method and application of coffee grounds, a bio-waste, is presented, and it is considered to be one of the efficient methods that can be utilized as an electrode material for high-performance supercapacitors.

키워드

과제정보

본 연구는 산업통상부/한국산업기술평가관리원의 탄소사업기반조성사업(바인더 및 코팅용 피치를 활용한 음극재용 실리콘산화물인조흑연 복합체 개발: 20006777) 및 2022년 정부(방위사업청)의 재원으로 국방과학연구소의 지원(UD2200061D)에 의하여 수행하였으며 이에 감사드립니다.

참고문헌

  1. S. Vargheese, M. Dinesh, K. V. Kavya, D. Pattappan, R. T. R. Kumar, and Y. Haldorai, Triazine-based 2D covalent organic framework-derived nitrogen-doped porous carbon for supercapacitor electrode, Carbon Lett., 31, 879-886 (2021). https://doi.org/10.1007/s42823-020-00190-6
  2. M. Pershaanaa, S. Bashir, S. Ramesh, and K. Ramesh, Every bite of Supercap: A brief review on construction and enhancement of supercapacitor, J. Energy Storage, 50, 104599 (2022).
  3. T. Xu, Z. Li, D. Wang, M. Zhang, L. Ai, Z. Chen, J. Zhang, X. Zhang, and L. Shen, A fast proton-induced pseudocapacitive supercapacitor with high energy and power density, Adv. Funct. Mater., 32, 2107720 (2022).
  4. R. Kumar, E. Joanni, S. Sahoo, J. J. Shim, W. K. Tan, A. Matsuda, and R. K. Singh, An overview of recent progress in nanostructured carbon-based supercapacitor electrodes: From zero to bi-dimensional materials, Carbon, 193, 298-338 (2022). https://doi.org/10.1016/j.carbon.2022.03.023
  5. H. Lin, Z. Tan, J. Yang, R. Mo, Y. Liang, M. Zheng, H. Hu, H. Dong, X. Liu, Y. Liu, and Y. Xiao, Highly porous carbon material from polycyclodextrin for high-performance supercapacitor electrode, J. Energy Storage, 50, 105036 (2022).
  6. J. Wang, Y. Huang, X. Han, Z. Li, S. Zhang, and M. Zong, A flexible Zinc-ion hybrid supercapacitor constructed by porous carbon with controllable structure, Appl. Surf. Sci., 579, 152247 (2022).
  7. Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A. Kvit, S. Kaskel, and G. Yushin, High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon, ACS Nano, 4, 1337-1344 (2010). https://doi.org/10.1021/nn901825y
  8. T. Meenatchi, V. Priyanka, R. Subadevi, W. R. Liu, C. H. Huang, and M. Sivakumar, Probe on hard carbon electrode derived from orange peel for energy storage application, Carbon Lett., 31, 1033-1039 (2021). https://doi.org/10.1007/s42823-020-00217-y
  9. H. Itoi, S. Kotani, Y. Tanabe, Y. Kasai, R. Suzuki, M. Miyaji, H. Iwata, and Y. Ohzawa, Study of the mesopore size effect on the electrochemical capacitor behaviors of mesoporous carbon/quinone derivative hybrids, Electrochim. Acta, 362, 137119 (2020).
  10. Y. D. Ma, J. F. Gao, X. W. Chen, and L. B. Kong, Regulation of the mesopore proportion of porous carbon for optimizing the performance of electric double layer capacitors, J. Energy Storage, 35, 102299 (2021).
  11. A. Burke, R&D considerations for the performance and application of electrochemical capacitors, Electrochim. Acta, 53, 1083-1091 (2007). https://doi.org/10.1016/j.electacta.2007.01.011
  12. Y. Ma, J. Yin, H. Liang, D. Yao, Y. Xia, K. Zuo, and Y. P. Zeng, A two step approach for making super capacitors from waste wood, J. Clean. Prod., 279, 123786 (2021).
  13. R. Lee, C. H. Kwak, H. Lee, S. Kim, and Y. S. Lee, Effect of nitrogen plasma surface treatment of rice husk-based activated carbon on electric double-layer capacitor performance, Appl. Chem. Eng., 33, 71-77 (2022).
  14. A. Chithra, R. Rajeev, and K. Prabhakaran, C/SiO2 and C/SiC composite foam monoliths from rice husk for thermal insulation and EMI shielding, Carbon Lett., 32, 639-651 (2021).
  15. Y. H. Hung, T. Y. Liu, and H. Y. Chen, Renewable coffee waste-derived porous carbons as anode materials for high-performance sustainable microbial fuel cells, ACS Sustain. Chem. Eng., 7, 16991-16999 (2019). https://doi.org/10.1021/acssuschemeng.9b02405
  16. R. C. Andrade, R. S. G. Menezes, R. A. F. Jr, and H. M. C. Andrade, Activated carbon microspheres derived from hydrothermally treated mango seed shells for acetone vapor removal, Carbon Lett., 31, 779-793 (2021). https://doi.org/10.1007/s42823-020-00184-4
  17. W. Huang, H. Zhang, Y. Huang, W. Wang, and S. Wei, Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors, Carbon, 49, 838-843 (2011). https://doi.org/10.1016/j.carbon.2010.10.025
  18. L. S. Maia, L. D. Duizit, F. R. Pinhatio, and D. R. Mulinari, Valuation of banana peel waste for producing activated carbon via NaOH and pyrolysis for methylene blue removal, Carbon Lett., 31, 749-762 (2021). https://doi.org/10.1007/s42823-021-00226-5
  19. A. Khan, R. A. Senthil, J. Pan, S. Osman, Y. Sun, and X. Shu, A new biomass derived rod-like porous carbon from tea-waste as inexpensive and sustainable energy material for advanced supercapacitor application, Electrochim. Acta, 335, 135588 (2020).
  20. M. Pagett, K. S. Teng, G. Sullivan, and W. Zhang, Reusing waste coffee grounds as electrode materials: Recent advances and future opportunities, Glob. Chall., 7, 2200093 (2023).
  21. T. Zhang, K. Tonouchi, Z. Kong, Y. Li, H. Cheng, Y. Qin, and Y. Y. Li, Improvement of coffee grounds high solid thermophilic methane fermentation by co-digestion with in-situ produced waste activated sludge: Performance and stability, Sci. Total Environ., 765, 142551 (2021).
  22. D. R. Vardon, B. R. Moser, W. Zheng, K. Witkin, R. L. Evangelista, T. J. Strathmann, K. Rajagopalan, and B. K. Sharma, Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar, ACS Sustain. Chem. Eng., 1, 1286-1294 (2013). https://doi.org/10.1021/sc400145w
  23. Y. H. Chiu, L. Y. Lin, Effect of activating agents for producing activated carbon using a facile one-step synthesis with waste coffee grounds for symmetric supercapacitors, J. Taiwan Inst. Chem. Eng., 101, 177-185 (2019). https://doi.org/10.1016/j.jtice.2019.04.050
  24. Z. Dai, P.G. Ren, H. Zhang, X. Gao, Y. L. Jin, Nitrogen-doped and hierarchically porous carbon derived from spent coffee ground for efficient adsorption of organic dyes, Carbon Lett., 31, 1249-1260 (2021). https://doi.org/10.1007/s42823-021-00248-z
  25. R. Hossain, R. K. Nekouei, I. Mansuri, and V. Sahajwalla, In-situ O/N-heteroatom enriched activated carbon by sustainable thermal transformation of waste coffee grounds for supercapacitor material, J. Energy Storage, 33, 102113 (2021).
  26. X. Liu, S. Zhang, X. Wen, X. Chen, Y. Wen, X. Shi, and E. Mijowska, High yield conversion of biowaste coffee grounds into hierarchical porous carbon for superior capacitive energy storage, Sci. Rep., 10, 3518 (2020).
  27. Z. Al-Hamamre, S. Foerster, F. Hartmann, M. Kroger, and M. Kaltschmitt, Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing, Fuel, 96, 70-76 (2012). https://doi.org/10.1016/j.fuel.2012.01.023
  28. K. Somnuk, P. Eawlex, and G. Prateepchaikul, Optimization of coffee oil extraction from spent coffee grounds using four solvents and prototype-scale extraction using circulation process, Int. J. Agric. Nat. Resour., 51, 181-189 (2017).
  29. J. C. Lee, H. J. Kim, H. W. Kim, and H. Lim, Iron-impregnated spent coffee ground biochar for enhanced degradation of methylene blue during cold plasma application, J. Ind. Eng. Chem., 98, 382-388 (2021).
  30. C. H. Wang, W. C. Wen, H. C. Hsu, and B. Y. Yao, High-capacitance KOH-activated nitrogen-containing porous carbon material from waste coffee grounds in supercapacitor, Adv. Powder Technol., 27, 1387-1395 (2016). https://doi.org/10.1016/j.apt.2016.04.033
  31. D. M. Xue, S. C. Qi, X. Liu, Y. X. Li, X. Q. Liu, and L. B. Sun, N-doped porous carbons with increased yield and hierarchical pore structures for supercapacitors derived from an N-containing phenyl-riched copolymer, J. Ind. Eng. Chem., 80, 568-575 (2019). https://doi.org/10.1016/j.jiec.2019.08.041
  32. J. Kim, H. V. T. Nquyen, G. J. Bahk, K. Kwak, and K. K. Lee, Activated carbons effectively purified by post-heat treatment under vacuum conditions, Carbon Lett., 31, 973-984 (2021). https://doi.org/10.1007/s42823-020-00209-y
  33. Z. Liu, N. Luo, J. Shi, Y. Zhang, C. Xie, W. Zhang, H. Wang, X. He, and Z. Chen, Raman spectroscopy for the discrimination and quantification of fuel blends, J. Raman Spectrosc., 50, 1008-1014 (2019). https://doi.org/10.1002/jrs.5602
  34. K. Charoensook, C. L. Huang, H. C. Tai, V. V. K. Lanjapalli, L. M. Chiang, S. Hosseini, Y. T. Lin, and Y. Y. Li, Preparation of porous nitrogen-doped activated carbon derived from rice straw for high-performance supercapacitor application, J. Taiwan Inst. Chem. Eng., 120, 246-256 (2021). https://doi.org/10.1016/j.jtice.2021.02.021
  35. T. Tagaya, Y. Hatakeyama, S. Shiraishi, H. Tsukada, M. J. Mostazo-Lpez, E. Moralln, and D. Cazorla-Amors, Nitrogen-doped seamless activated carbon electrode with excellent durability for electric double layer capacitor, J. Electrochem. Soc., 167, 060523 (2020).
  36. A. E. Nemr, R. M. Aboughaly, A. E. Sikaily, M. S. Masound, M. S. Ramadan, S. Ragab, Microporous-activated carbons of type I adsorption isotherm derived from sugarcane bagasse impregnated with zinc chloride, Carbon Lett., 32, 229-249 (2022). https://doi.org/10.1007/s42823-021-00270-1
  37. K. Ideta, D. W. Kim, T. Kim, K. Nakabayashi, J. Miyawaki, J. I. Park, and S. H. Yoon, Effect of pore size in activated carbon on the response characteristic of electric double layer capacitor, J. Ind. Eng. Chem., 102, 321-326 (2021). https://doi.org/10.1016/j.jiec.2021.07.014
  38. C. Young, J. Lin, J. Wang, B. Ding, X. Zhang, S. M. Alshehri, T. Ahamed, R. R. Salunkhe, S. A. Hossain, J. H. Khan, Y. Ide, J. Kim, J. Henzie, K. C. W. Wu, N. Kobayashi, and Y. Yamauchi, Significant effect of pore sizes on energy storage in nanoporous carbon supercapacitors, Chem. Eur. J., 24, 6127-6132 (2018). https://doi.org/10.1002/chem.201705465
  39. N. Murugan, S. Thangarasu, S. B. Seo, Y. R. Choi, S. S. Magdum, T. H. Oh, and Y. A. Kim, Facile synthesis of interconnected layered porous carbon framework for high-performance supercapacitors, Carbon Lett., 33, 791-802 (2023). https://doi.org/10.1007/s42823-023-00460-z
  40. B. M. Lee, B. S. Choi, J. Y. Lee, S. K. Hong, J. S. Lee, and J. H. Choi, Fabrication of porous carbon beads from polyacrylonitrile as electrode materials for electric double-layer capacitors, Carbon Lett., 31, 67-74 (2021). https://doi.org/10.1007/s42823-020-00150-0
  41. C. Poochai, A. Srikhaow, J. Lohitkarn, T. Kongthong, S. Tuantranont, S. Tuantranont, V. Primpray, N. Maeboonruan, A. Wisitsoraat, and C. Sriprachuabwong, Waste coffee grounds derived nanoporous carbon incorporated with carbon nanotubes composites for electrochemical double-layer capacitors in organic electrolyte, J. Energy Storage, 43, 103169 (2021).
  42. R. Atchudan, T. Nesakumar, J. I. Edison, M. Shanmugam, S. Perumal, R. Vinodh, T. Somanathan, and Y. R. Lee, Biowaste-originated heteroatom-doped porous carbonaceous material for electrochemical energy storage application, J. Ind. Eng. Chem., 98, 308-317 (2021). https://doi.org/10.1016/j.jiec.2021.03.037
  43. J. Cheng, Z. Lu, X. Zhao, X. Chen, Y. Zhu, and H. Chu. Electrochemical performance of porous carbons derived from needle coke with different textures for supercapacitor electrode materials, Carbon Lett., 31, 57-65 (2021). https://doi.org/10.1007/s42823-020-00149-7
  44. T. H. Hsieh, H. L. Wang, G. T. Yu, G. M. Huang, J. H. Lin, Meso-pore dominant activated carbon from spent coffee grounds for high-performance electrochemical capacitors in organic electrolyte, J. Environ. Chem. Eng., 9, 106418 (2021).