DOI QR코드

DOI QR Code

Effect of the Addition of Fluorinated Surfactant on the Solubilization of n-Hexane by Hydrocarbon Surfactant

불소계 계면활성제 첨가가 탄화수소계 계면활성제에 의한 n-헥산의 가용화에 미치는 영향에 관한 연구

  • Hee Dong Shin (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Ki Ho Park (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Jong Choo Lim (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 신희동 (동국대학교 화공생물공학과) ;
  • 박기호 (동국대학교 화공생물공학과) ;
  • 임종주 (동국대학교 화공생물공학과)
  • Received : 2023.04.30
  • Accepted : 2023.05.16
  • Published : 2023.08.10

Abstract

In this study, the effect of the addition of fluorinated surfactant FS-606 on the solubilization of n-hexane by hydrocarbon surfactant CDP-W was investigated. Oil drop contacting experiments revealed that solubilization rate is independent of initial oil drop size and proportional to the initial surfactant concentration, suggesting that solubilization of n-hexane oil by the surfactant mixture of FS-606 and CDP-W is controlled by an interface-controlled mechanism. In addition, the solubilization rate has been shown to increase with an increase in FS-606 composition, reach a maximum, and then decrease with a further increase in FS-606 composition. On the other hand, the interfacial tension between micellar solution and n-hexane oil has been found to decrease with an increase in FS-606 composition, reach a minimum, and then increase with a further increase in FS-606 composition.

본 연구에서는 불소계 계면활성제 FS-606 첨가가 탄화수소계 계면활성제 CDP-W에 의한 n-헥산 가용화에 미치는 영향에 관한 실험을 수행하였다. 오일 방울 접촉 실험방법을 사용하여 측정한 가용화 속도는 초기 n-헥산 오일 방울 크기에 상관없이 일정하게 나타났으며, 계면활성제 농도에 따라 거의 선형적으로 증가함을 알 수 있었다. 이러한 결과로부터 FS-606과 CDP-W의 혼합 계면활성제에 의한 n-헥산 오일의 가용화는 계면 조절 메커니즘을 따르는 것을 확인 할 수 있었다. 또한 FS-606과 CDP-W의 혼합 계면활성제 시스템에서의 FS-606 조성 증가에 따라 가용화 속도는 증가하여 최대를 나타낸 후 다시 감소하였다. 반면에 FS-606 조성 증가에 따라 계면활성제 수용액과 n-헥산 오일 사이의 계면장력은 감소하여 최소를 나타낸 후 다시 증가하였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부 소재부품기술개발-소재부품패키지형 (과제번호 20011027, 반도체 디스플레이 공정용 불소계 계면활성제 제조기술 개발)의 지원을 받아 수행되었으며, 이에 감사드립니다.

References

  1. A. Zaggia and B. Ameduri, Recent advances on synthesis of potentially non-bioaccumulable fluorinated surfactants, Curr. Opin. Colloid Interface Sci., 17, 188-195. (2012). https://doi.org/10.1016/j.cocis.2012.04.001
  2. N. M. Kovalchuk, A. Trybala, V. Starov, O. Matar, and N. Ivanova, Fluoro- vs hydrocarbon surfactants: why do they differ in wetting performance?, Adv. Colloid Interface Sci., 210, 65-71 (2014). https://doi.org/10.1016/j.cis.2014.04.003
  3. M. F. Paige and A. F. Eftaiha, Phase-separated surfactant monolayers: exploiting immiscibility of fluorocarbons and hydrocarbons to pattern interfaces, Adv. Colloid Interface Sci., 248, 129-146 (2017). https://doi.org/10.1016/j.cis.2017.07.023
  4. K. Szymczyk, A. Zdziennicka, and B. Ja ́nczuk, Properties of some nonionic fluorocarbon surfactants and their mixtures with hydrocarbon ones, Adv. Colloid Interface Sci., 292, 102421 (2021).
  5. S. M. S. Hussain, A. A. Adewunmi, A. Mahboob, M. Murtaza, X. Zhou, and M. S. Kama, Fluorinated surfactants: A review on recent progress on synthesis and oilfield applications, Adv. Colloid Interface Sci., 303, 102634 (2022).
  6. C. S. Dunaway, S. D. Christian, and J. F. Scamehorn, Solubilization in Surfactant Aggregates, 1st ed., Marcel Dekker, Inc., New York (1995).
  7. M. J. Bae and J. C. Lim, Solubilization mechanism of hydrocarbon oils by polymeric nonionic surfactant solution, Korean Chem. Eng. Res., 47, 24-30 (2009)
  8. M. J. Bae and J. C. Lim, Effect of alcohol on solubilization of pure hydrocarbon oils by Plumnic L64 polymeric nonionic surfactant, Appl. Chem. Eng., 12, 137-140 (2008).
  9. J. Weiss and D. J. McClements, Mass transport phenomena in oil-in-water emulsions containing surfactant micelles: Solubilization, Langmuir, 16, 5879-5883 (2000). https://doi.org/10.1021/la9914763
  10. S. G. Rho and C. H. Kang, Solubilization of BSA into AOT reverse micelles using the phase-transfer method: Effects of pH and salts, J. Ind. Eng. Chem., 10, 247-251
  11. H. Y. Cheon, M. S. Kim, and N. H. Jeong, Experimental and theoretical studies of cationic gemini surfactant and anionic sodium lauryl ether sulfate, J. Ind. Eng. Chem., 11, 10-19 (2005).
  12. J. H. Oh, Study on the micellization of cetyltrimethylammonium bromide in diol solution, J. Kor. Ind. Eng. Chem., 11, 80-86 (2000).
  13. B. J. Carroll, The kinetics of solubilization of nonpolar oils by nonionic surfactant solutions, J. Colloid Interface Sci., 79, 126-135 (1981). https://doi.org/10.1016/0021-9797(81)90055-2
  14. S. R. Dungan, B. H. Tai and N. I. Gerhardt, Transport mechanisms in the micellar solubilization of alkanes in oil-in-water emulsions, Colloids Surf. A: Phys. Chem. Eng. Asp., 216, 149-166 (2003). https://doi.org/10.1016/S0927-7757(02)00549-6
  15. A. S. Kabalnov and J. Weers, Kinetics of mass transfer in micellar systems: Surfactant adsorption, solubilization kinetics, and ripening, Langmuir, 12, 3442-3448 (1996). https://doi.org/10.1021/la9600457
  16. A. A. Pena and C. A. Miller, Kinetics of compositional ripening in emulsions stabilized with nonionic surfactants, J. Colloid Interface Sci., 244, 154-163 (2001). https://doi.org/10.1006/jcis.2001.7928
  17. M. J. Rosen, Surfactants and Interfacial Phenomena, 3rd ed., John Wiley & Sons, New York, 2004.
  18. S. H. Jeon, J. Y. Kim, J. W. Jung, K. H. Kim, and J. Y. Kim, Synergistic effects of mixed fluorocarbon/hydrocarbon surfactant systems on foam stability, Langmuir, 21, 2696-2700 (2005). https://doi.org/10.1021/la048167j
  19. A. M. Amani, H. Dashti, M. Taghizadeh and A. R. Khanchi, A study of the synergistic effect of fluorinated surfactant with nonionic surfactants, J. Disper. Sci. Technol., 36, 51-58 (2015). https://doi.org/10.1080/01932691.2013.873867
  20. S. Li, J. Li, H. Zhang, and S. Li, Synergistic effects of mixed fluorocarbon and hydrocarbon surfactants on foam stability and oil recovery, Colloids Surf. A: Phys. Chem. Eng. Asp., 539, 31-38 (2018).
  21. S. Xie, Y. Cao, S. Ma, W. Wang, and L. He, Synergistic effects of fluorocarbon and hydrocarbon surfactants on emulsion properties and heavy oil recovery, J. Mol. Liq., 268, 438-448 (2018). https://doi.org/10.1016/j.molliq.2018.07.051
  22. P. Mukerjee, Fluorocarbon-hydrocarbon interactions in micelles and other lipid assemblies, at interfaces, and in solutions, Colloids Surf. A: Phys. Chem. Eng. Asp., 84, 1-10 (1994). https://doi.org/10.1016/0927-7757(93)02682-5
  23. P. Posocco, A. Perazzo, V. Preziosi, E. Laurini, S. Priclab and S. Guido, Interfacial tension of oil/water emulsions with mixed nonionic surfactants: comparison between experiments and molecular simulations, Phys. Chem. Chem. Phys., 20, 19499-19509 (2018).
  24. M. P. Krafft and J. G. Riess, Highly fluorinated amphiphiles and colloidal systems, and their applications in the biomedical field, a contribution, Biochimie, 80, 489-514 (1998). https://doi.org/10.1016/S0300-9084(00)80016-4
  25. P. Somasundaran and L. Huang, Adsorption/aggregation of surfactants and their mixtures at solid-liquid interfaces, Adv. Colloid Interface Sci., 88, 179-208 (2000). https://doi.org/10.1016/S0001-8686(00)00044-0
  26. Rui Zhang, P. Somasundaran, Advances in adsorption of surfactants and their mixtures at solid/solution interfaces, Adv. Colloid Interface Sci., 123-126, 213-229 (2006). https://doi.org/10.1016/j.cis.2006.07.004
  27. K. Shivaji Sharma, Sandeep R. Patil, Animesh K. Rakshit, Karen Glenn, Maryjo Doiron, Rama M. Palepu, and P. A. Hassan, Self-aggregation of a cationic-nonionic surfactant mixture in aqueous media: Tensiometric, conductometric, density, light scattering, potentiometric, and fluorometric studies, J. Phys. Chem. B, 108, 12804-12812 (2004). https://doi.org/10.1021/jp048294o
  28. 28.. J. Tan, Z. He, and Y. Miao,. Effect of steric hindrance on the aggregation behavior of cationic silicone surfactants in aqueous solutions, J. Solution Chem., 48, 891-904 (2019). https://doi.org/10.1007/s10953-019-00888-w
  29. J. Wu, Y. Xu, T. Dabros, and H. Hamza, Effect of EO and PO positions in nonionic surfactants on surfactant properties and demulsification performance, Colloids Surf. A: Phys. Chem. Eng. Asp., 252, 79-85 (2005). https://doi.org/10.1016/j.colsurfa.2004.09.034
  30. M. Dahanayake, A. W. Cohen, and M. J. Rosen, Relationship of structure to properties of surfactants. 13. Surface and thermodynamic properties of some oxyethylenated sulfates and sulfonates, J. Phys. Chem., 90, 2413-2418 (1986). https://doi.org/10.1021/j100402a032