DOI QR코드

DOI QR Code

새로운 Chung's equation-XII에 의한 연소성 물질의 화재위험성지수 및 등급 평가

Fire Risk Index and Grade Evaluation of Combustible Materials by the New Chung's Equation-XII

  • 정영진 (국가안전환경원) ;
  • 진의 (강원대학교 소방방재연구센터)
  • Yeong-Jin Chung (The National Safety Environment Institute) ;
  • Eui Jin (Fire & Disaster Prevention Research Center, Kangwon National University)
  • 투고 : 2023.04.16
  • 심사 : 2023.05.15
  • 발행 : 2023.08.10

초록

연소성 물질의 화재위험성 평가를 하기 위하여 Chung's equations-X, Chung's equations-XI, 그리고 Chung's equation-XII 를 새로 정립하였다. 화재위험성지수-XII (fire risk index-XII, FRI-XII)와 화재위험성등급(fire risk rating, FRR)을 산정하였다. 시험편은 녹나무, 벚나무, 고무나무, 느릅나무를 선택하였다. 콘칼로리미터(ISO 5660-1)를 사용하여 시험편에 대한 연소 특성을 시험하였다. Chung's equations에 의해 산정된 화재성능지수-X (fire performance index-X, FPI-X)과 화재성장지수-X (fire growth index-X, FGI-X)은 각각 89.34~1696.75 s2/kW와 0.0006~0.0107 kW/s2 로 나타났다. 또한 화재성능지수-XI (fire performance index-XI, FPI-XI)과 화재성장지수-XI (fire growth index-XI, FGI-XI)은 각각 0.08~1.48과 0.67~11.89으로 나타났다. 화재위험성 등급인 화재위험성지수-XII (FRI-XII)는 녹나무가 148.63 (화재위험성등급: G)으로 화재위험성이 매우 높은 목재로 나타났다. 그러므로 휘발성 유기 화합물을 다량 함유하고 있는 연소성 물질은 FPI-X과 FPI-XI이 낮아지고, FGI-X과 FGI-XI이 높아짐에 의하여 FRI-XII가 높은 값을 나타내었다.

The evaluation of fire risk for combustible materials was carried out using Chung's equations-X, Chung's equations-XI, and Chung's equation-XII, which were newly established. The fire risk index-XII (FRI-XII) and fire risk rating (FRR) were calculated for specimens including camphor tree, cherry, rubber tree, and elm. The combustion characteristics were determined using a cone calorimeter according to ISO 5660-1. Chung's equations caculated the fire performance index-X (FPI-X) and fire growth index-X (FGI-X) values ranged from 89.34 to 1696.75 s2 /kW and from 0.0006 to 0.0107 kW/s2 , respectively. In addition, the fire performance index-XI (FPI-XI) and fire growth index-XI (FGI-XI) varied from 0.08 to 1.48 and from 0.67 to 11.89, respectively. The fire risk index-XII (FRI-XII), which is an indicator of fire risk, showed that camphor tree had a value of 148.63 (fire risk rating: G), indicating a very high fire risk. This suggests that combustible materials with a high concentration of volatile organic compounds have lower FPI-X and FPI-XI values, higher FGI-X and FGI-XI values, and consequently higher FRI-XII values, indicating an increased fire risk.

키워드

참고문헌

  1. J. Buzek and E. Gyoori, Regulation (EU) No 305/2011 of the european parliament and of the council of 9 March 2011, Laying down harmonised conditions for the marketing of construction products and repealing council directive 89/106/EEC text with EEA relevance, OJEU, 5-43 (2011).
  2. V. Babrauskas, Effective measurement techniques for heat, smoke and toxic fire gases, Fire Saf., 17, 13-26 (1991). https://doi.org/10.1016/0379-7112(91)90010-V
  3. V. Babrauskas and S. J. Grayson, Heat Release in Fires, Elsevier, London, UK, 210-217 (1992).
  4. CBUF Report, Fire safety of upholstered furniture - The final report on the CBUF research programme, Sundstrom, B., Ed., EUR 16477 EN, European commission, measurements and testing report, Contract No. 3478/1/0/196/11-BCR-DK(30), Interscience Communications, London, UK (1995).
  5. M, M. Hirschler, Analysis of and potential correlations between fire tests for electrical cables, and how to use this information for fire hazard assessment, Fire Technol., 33, 291-315 (1997). https://doi.org/10.1023/A:1015384109580
  6. M. Janssens, Fundamental thermophysical characteristics of wood and their role in enclosure fire growth, Doctoral's thesis, University of Gent, Belgium (1991).
  7. ISO 5660-1, Reaction-to-fire tests-heat release, smoke production and mass loss rate-part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement), Geneve, Switzerland (2015).
  8. M. A. Delichatsios, Smoke yields from turbulent buoyant jet flames, Fire Saf., 20, 299-311 (1993). https://doi.org/10.1016/0379-7112(93)90052-R
  9. H. C. Tran, Experimental data on wood materials. In: V. Babrauskas and S. J. Grayson (eds.). Heat Release in Fires, 357-372, Elsevier Applied Science, New Yok, USA (1992).
  10. M. Spearpoint and J. Quintiere, Predicting the piloted ignition of wood in the cone calorimeter using an integral model-effect of species, grain orientation and heat flux", Fire Saf., 36, 391-415 (2001). https://doi.org/10.1016/S0379-7112(00)00055-2
  11. M. Delichatsios, B. Paroz, and A. Bhargava, Flammability properties for charring materials, Fire Saf., 38, 219-228 (2003). https://doi.org/10.1016/S0379-7112(02)00080-2
  12. B. Tawiah, B. Yu, R. K. K. Yuen, Y. Hu, R. Wei, J. H. Xin, and B. Fei, Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene oxide/poly(lactic acid) nanocomposites, Carbon, 150, 8-20 (2019). https://doi.org/10.1016/j.carbon.2019.05.002
  13. L. Yan, Z. Xu, and N. Deng, Effects of polyethylene glycol borate on the flame retardancy and smoke suppression properties of transparent fire-retardant coatings applied on wood substrates, Prog. Org. Coat., 135, 123-134 (2019). https://doi.org/10.1016/j.porgcoat.2019.05.043
  14. Y. J. Chung and E. Jin, Smoke generation by burning test of cypress plates treated with boron compounds, Appl. Chem. Eng., 29, 670-676 (2018).
  15. Y. J. Chung and E. Jin, Rating evaluation of fire risk for combustible materials in case of fire, Appl. Chem. Eng., 32, 75-82 (2021).
  16. Y. J. Chung and E. Jin, Rating of fire risk of combustible materials by the new Chung's Equation-IX, Appl. Chem. Eng., 34, 144-152 (2023).
  17. W. T. Simpson, Drying and control of moisture content and dimensional changes. Wood Handbook : Wood as an Engineering Material. USDA Forest service, Forest products laboratory, General technical report FPL, GTR-113, 12.1-12.20, Madison, Wisconsin, USA (1999).
  18. Y. J. Chung and E. Jin, Assessment and prediction of fire risk grades of wood species in different storage environments, Fire Sci. Eng., 36, 83-92 (2022).
  19. N. Hirota and M. Hiroi, The later studies on the camphor tree, on the leaf oil of each practical form and its utilisation, Perfumery and Essential Oil Record, 58, 364-367 (1967).
  20. J. D. Dehaan, Kirk's Fire Investigation, 5th ed., 84-112, Pearson, London, England (2002).
  21. V. Babrauskas, R. D. Peacock, Heat release rate: the single most important variable in fire hazard, Fire Saf., 18, 255-272 (1992). https://doi.org/10.1016/0379-7112(92)90019-9
  22. M. M. Hirschler, Use of heat release rate to predict whether individual furnishings would cause self propagating fires, Fire Saf., 32, 273-296 (1999). https://doi.org/10.1016/S0379-7112(98)00037-X
  23. M. M. Hirschler, Heat release testing of consumer products, J. ASTM Int., 6, 1-25 (2009). https://doi.org/10.1520/JAI102258
  24. F. M. Pearce, Y. P. Khanna, and D. Raucher, Thermal analysis in polymer flammability. In: E. A. Turi (ed.). Thermal characterization of polymeric materials, 793-843, Academic Press, New York, USA (1981).
  25. V. Babrauskas, Development of the cone calorimeter - A bench-scale, heat release rate apparatus based on oxygen consumption, Fire Mater., 8, 81-95 (1984). https://doi.org/10.1002/fam.810080206
  26. Y. J. Chung, Comparison of combustion properties of native wood species used for fire pots in Korea, J. Ind. Eng. Chem., 16, 15-19 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
  27. B. Schartel and T. R. Hull, Development of fire-retarded materials-Interpretation of cone calorimeter data, Fire Mater., 31, 327- 354 (2007). https://doi.org/10.1002/fam.949