DOI QR코드

DOI QR Code

액정 엘라스토머 섬유의 이해와 연구동향

Understanding and Research Trends in Liquid Crystal Elastomer Fibers

  • 김영빈 (부경대학교 공업화학.고분자공학부 고분자공학전공) ;
  • 김대석 (부경대학교 공업화학.고분자공학부 고분자공학전공)
  • Young Been Kim (Department of Polymer Engineering, Pukyong National University) ;
  • Dae Seok Kim (Department of Polymer Engineering, Pukyong National University)
  • 투고 : 2023.04.28
  • 심사 : 2023.05.24
  • 발행 : 2023.08.10

초록

액정 엘라스토머 섬유는 1차원 형태로서 소프트 로봇, 생체모방 구동기 등의 다양한 분야에서 광범위하게 응용되고 있다. 액정 엘라스토머는 액체의 유동성과 고체의 질서도 그리고 고무의 탄성을 포함하며 이를 바탕으로 한 자극-응답성을 가지고 있다. 특히, 형상가변 측면에서 열, 빛, 전기장, 자기장 등의 다양한 자극에 대한 응답성을 프로그래밍하여 사용하면 높은 자유도와 더불어 물건 들어올리기, 꼬임, 회전 등 다양한 움직임을 구현할 수 있다. 따라서, 액정 엘라스토머 섬유는 인공근육, 소프트로봇, 웨어러블 기술, 센싱 기술 등 다양한 분야로의 응용가능성을 가지고 있다. 이런 액정 엘라스토머 섬유의 연구는 기존 단순 섬유를 넘어서는 다양한 기능성을 포함할 수 있는 스마트 소재로서 도래한 4차 산업에서 다양한 분야에 활용도가 높다고 평가된다. 본 총설에서는 액정 엘라스토머 섬유의 구조 및 기본 특성에 대해 소개하고, 배향 기반 제작법과 이를 이용한 인공근육, 스마트 패브릭, 소프트 로봇 등, 다양한 응용에 대해 최신 연구 동향을 소개한다.

Liquid crystal elastomer (LCE) fibers have been widely applied in various fields, such as soft robots and biomimetic actuators, in a one-dimensional form. LCEs possess the characteristics of both fluidity and solid order, as well as the elasticity of rubber, and exhibit stimulus-response based on these properties. In particular, by programming the responsiveness to various stimuli such as heat, light, electric fields, and magnetic fields in terms of shape-changing, various movements such as lifting, twisting, and rotating can be realized with high degrees of freedom. Therefore, LCE fibers have the potential for application in various fields such as artificial muscles, soft robots, wearable technologies, and sensing technologies. The research on liquid crystal elastomer fibers is evaluated to have high applicability in various fields in the Fourth Industrial Revolution as a smart material that can include various functionalities beyond simple fibers. In this review, we introduce the structure and basic characteristics of liquid crystal elastomer fibers, the latest research trends on orientation-based fabrication methods, and various applications such as artificial muscles, smart fabrics, and soft robots.

키워드

과제정보

본 리뷰논문은 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2021K1A3A1A21039767, 2021R1F1A1047516).

참고문헌

  1. K. M. Herbert, H. E. Fowler, J. M. McCracken, K. R. Schlafmann, J. A. Koch, and T. J. White, Synthesis and alignment of liquid crystalline elastomers, Nat. Rev. Mater., 7, 23-38 (2022).
  2. Z. Wen, K. Yang, and J. M. Raquez, A review on liquid crystal polymers in free-standing reversible shape memory materials, Molecules, 25, 1241 (2020).
  3. Y. Shang, J. Wang, T. Ikeda, and L. Jiang, Bio-inspired liquid crystal actuator materials, J. Mater. Chem. C, 7, 3413-3428 (2019). https://doi.org/10.1039/C9TC00107G
  4. W. C. Han, Y. B. Kim, Y. J. Lee, and D. S. Kim, Exploring multiphase liquid crystal polymeric droplets created by a partial phase-separation, Colloids Surf. A: Physicochem. Eng. Asp., 654, 130124 (2022). https://doi.org/10.1016/j.colsurfa.2022.130124
  5. W. C. Han, Y. J. Lee, S. U. Kim, H. J. Lee, Y. S. Kim, and D. S. Kim, Versatile Mechanochromic sensor based on highly stretchable chiral liquid crystalline elastomer, Small, 19, 2206299
  6. J. Kupfer and H. Finkelmann, Nematic liquid single crystal elastomers, Die Makromol. Chem. Rapid Commun., 12, 717-726 (1991). https://doi.org/10.1002/marc.1991.030121211
  7. A. F. Minori, Q. He, P. E. Glick, I. Adibnazari, A. Stopol, S. Cai, and M. T. Tolley, Reversible actuation for self-folding modular machines using liquid crystal elastomer, Smart Mater. Struct., 29, 105003 (2020).
  8. J. Chen, A. S. Johnson, J. Weber, O. I. Akomolafe, J. Jiang, and C. Peng, Programmable light-driven liquid crystal elastomer kirigami with controlled molecular orientations, Adv. Intel. Sys., 4, 2100233 (2022).
  9. M. Wang, X. B. Hu, B. Zuo, S. Huang, X. M. Chen, and H. Yang, Liquid crystal elastomer actuator with serpentine locomotion, Chem. Commun., 56, 7597-7600 (2020). https://doi.org/10.1039/D0CC02823A
  10. Y. Y. Xiao, Z. C. Jiang, and Y. Zhao, Liquid crystal polymer-based soft robots, Adv. Intel. Sys., 2, 2000148 (2020). https://doi.org/10.1002/aisy.202000148
  11. M. P. Da Cunha, M. G. Debije, and A. P. H. J. Schenning, Bioinspired light-driven soft robots based on liquid crystal polymers, Chem. Soc. Rev., 49, 6568-6578 (2020). https://doi.org/10.1039/D0CS00363H
  12. T. J. White and D. J. Broer, Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers, Nat. Mater., 14, 1087-1098 (2015). https://doi.org/10.1038/nmat4433
  13. H. Wermter and H. Finkelmann, Liquid crystalline elastomers as artificial muscles, e-Polymers, 1, 013 (2001).
  14. Z. Hu, Y. Li, T. Zhao, and J. A. Lv, Self-winding liquid crystal elastomer fiber actuators with high degree of freedom and tunable actuation, Appl. Mater. Today, 27, 101449 (2022).
  15. M. O. Saed, A. Gablier, and E. M. Terentjev, Exchangeable liquid crystalline elastomers and their applications, Chem. Rev., 122, 4927-4945 (2021). https://doi.org/10.1021/acs.chemrev.0c01057
  16. T. Ube and T. Ikeda, Photomobile polymer materials with complex 3d deformation, continuous motions, self-regulation, and enhanced processability, Adv. Opt. Mater., 7, 1900380 (2019).
  17. H. M. D. Bandara and S. C. Burdette, Photoisomerization in different classes of azobenzene, Chem. Soc. Rev., 41, 1809-1825 (2012). https://doi.org/10.1039/C1CS15179G
  18. P. Palffy-Muhoray, M. Camancho-Lopez, H. Finkelmann, and M. Shelley, Fast liquid crystal elastomer swins into the dark, Nat. Mater., 3, 307-10 (2004). https://doi.org/10.1038/nmat1118
  19. S. C. Cai, J. J. Li, E. Q. Yu, X. Chen, J. Chen, and H. P. Jia, Strong photothermal effect of plasmonic Pt nanoparticles for efficient degradation of volatile organic compounds under solar light irradiation, ACS Appl. Nano Mater., 1, 6368-6377 (2018). https://doi.org/10.1021/acsanm.8b01578
  20. J. Liang, H. Liu, J. Yu, L. Zhou, and J. Zhu, Plasmon-enhanced solar vapor generation, Nanophotonics, 8, 771-786 (2019). https://doi.org/10.1515/nanoph-2019-0039
  21. L. Dong, and Y. Zhao, Photothermally driven liquid crystal polymer actuators, Mater. Chem. Front., 2, 1932-1943 (2018). https://doi.org/10.1039/C8QM00363G
  22. H. Tian, Z. Wang, Y. Chen, J. Shao, T. Gao, and S. Cai, Polydopamine-coated main-chain liquid crystal elastomer as optically driven artificial muscle, ACS Appl. Mater. Inter., 10, 8307-8316 (2018). https://doi.org/10.1021/acsami.8b00639
  23. J. A. Lv, Y. Liu, J. Wei, E. Chen, L. Qin, and Y. Yu, Photocontrol of fluid slugs in liquid crystal polymer microactuators, Nature, 537, 179-184 (2016). https://doi.org/10.1038/nature19344
  24. H. Liu, H. Tian, X. Li, X. Chen, K. Zhang, H. Shi, C. Wang, and J. Shao, Shape-programmable, deformation-locking, and self-sensing artificial muscle based on liquid crystal elastomer and low-melting point alloy, Sci. Adv., 8, eabn5722 (2022).
  25. Z. Pei, Y. Yang, Q. Chen, E. M. Terentjev, Y. Wei, and Y. Ji, Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds, Nat. Mater., 13, 36-41 (2014). https://doi.org/10.1038/nmat3812
  26. S. Nocentini, D. Martella, D. S. Wiersma, and C. Parmeggiani, Beam steering by liquid crystal elastomer fibres, Soft Matter, 13, 8590-8596 (2017). https://doi.org/10.1039/C7SM02063E
  27. Y. Wang, J. Sun, W. Liao, and Z. Yang, Liquid crystal elastomer twist fibers toward rotating microengines, Adv. Mater., 34, 2107840 (2022).
  28. Y. Geng, R. Kizhakidathazhath, and J. P. F. Lagerwall, Robust cholesteric liquid crystal elastomer fibres for mechanochromic textiles, Nat. Mater., 21, 1441-1447 (2022). https://doi.org/10.1038/s41563-022-01355-6
  29. D. S. Kim, Y. J. Lee, Y. Wang, J. Park, K. I. Winey, and S. Yang, Self-folding liquid crystal network filaments patterned with vertically aligned mesogens, ACS Appl. Mater. Inter., 14, 50171-50179 (2022). https://doi.org/10.1021/acsami.2c14947
  30. D. S. Kim, Y.-J. Lee, Y. B. Kim, Y. Wang, and S. Yang, Autonomous, untethered gait-like synchronization of lobed loops made from liquid crystal elastomer fibers via spontaneous snapthrough, Sci. Adv., 9, eadh5107
  31. I. H. Kim, S. Choi, J. Lee, J. Jung, J. Yeo, J. T. Kim, S. Ryu, S.-K. Ahn, and S. O. Kim, Human-muscle-inspired single fibre actuator with reversible percolation, Nat. Nanotech., 17, 1198-1205 (2022). https://doi.org/10.1038/s41565-022-01220-2
  32. D. Mistry, N. A. Traugutt, K. Yu, and C. M. Yakacki, Processing and reprocessing liquid crystal elastomer actuators, J. Appl. Phys., 129, 130901 (2021).
  33. K. Kim, Y. Guo, J. Bae, S. Choi, H. Y. Song, S. Park, H. Kim, and S. K. Ahn, 4D printing of hygroscopic liquid crystal elastomer actuators, Small, 17, 2100910 (2021).
  34. C. P. Ambulo, J. J. Burroughs, J. M. Boothby, H. Kim, M. R. Shankar, and T. H. Ware, Four-dimensional printing of liquid crystal elastomers, ACS Appl. Mater. Inter., 9, 37332-37339 (2017). https://doi.org/10.1021/acsami.7b11851
  35. A. Kotikian, J. M. Morales, A. Lu, J. Mueller, Z. S. Davidson, J. W. Boley, and J. A. Lewis, Innervated, self-sensing liquid crystal elastomer actuators with closed loop control, Adv. Mater., 33, 2101814 (2021).
  36. Z. Wang, Z. Wang, Y. Zheng, Q. He, Y. Wang, and S. Cai, Three-dimensional printing of functionally graded liquid crystal elastomer, Sci. Adv., 6, eabc0034 (2020).
  37. W. Hou, J. Wang, and J. A. Lv, Bioinspired liquid crystalline spinning enables scalable fabrication of high-performing fibrous artificial muscles, Adv. Mater., 35, 2211800
  38. K. Ghosal, A. Chandra, Praveen G., Snigdha S., S. Roy, C. Agatemor, S. Thomas, and I. Provaznik, Electrospinning over solvent casting: tuning of mechanical properties of membranes, Sci. Rep., 8, 5058 (2018).
  39. C. Gotti, A. Sensini, A. Zucchelli, R. Carloni, and M. L. Focarete, Hierarchical fibrous structures for muscle-inspired soft-actuators: A review, Appl. Mater. Today, 20, 100772 (2020).
  40. J. Wu, and Y. Hong, Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration, Bio. Mater., 1, 56-64 (2016).
  41. D. J. Roach, C. Yuan, X. Kuang, V. C. F. Li, P. Blake, M. L. Romero, I. Hammel, K. Yu, and H. J. Qi, Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles, ACS Appl. Mater. Inter., 11, 19514-19521 (2019). https://doi.org/10.1021/acsami.9b04401
  42. P. E. Silva, X. Lin, M. Vaara, M. Mohan, J. Vapaavuori, and E. M. Terentjev, Active textile fabrics from weaving liquid crystalline elastomer filaments, Adv. Mater., 35, 2210689
  43. Z. Hu, Y. Li, and J. A. Lv, Phototunable self-oscillating system driven by a self-winding fiber actuator, Nat. Commun., 12, 3211 (2021).
  44. N. Najiya, N. Popov, V. S. R. Jampani, and J. P. F. Lagerwall, Continuous flow microfluidic production of arbitrarily long tubular liquid crystal elastomer peristaltic pump actuators, Small, 19, 2204693 (2023).