DOI QR코드

DOI QR Code

Early-growth comparison of diploid and triploid rainbow trout (Oncorhynchus mykiss) in South Korea

  • Seung-Baek Lee ( Department of Fisheries Biology, Pukyong National University) ;
  • Josel Cadangin ( Department of Fisheries Biology, Pukyong National University) ;
  • Su-Jin Park ( Department of Fisheries Biology, Pukyong National University) ;
  • Youn-Hee Choi ( Department of Fisheries Biology, Pukyong National University)
  • Received : 2022.12.22
  • Accepted : 2023.05.11
  • Published : 2023.07.31

Abstract

Fast somatic growth is important considerations for successful and competitive aquaculture industry. In rainbow trout reared in South Korea, triploid induction was used to suppress negative influence of reproductive maturation to body growth. However, the effects of triploidy are visible in both mature fish and developing juvenile fish. Thus, it is also important to explicate the effect of triploid induction on growth during the early-life stages of rainbow trout-alevins and fry. Rainbow trout fertilized eggs were subjected to triploid induction and polyploidy was checked by flow cytometry. Diploid and triploid alevins and fry were reared separately in tanks with constant flow of freshwater through flow-through water system and growth measurements were done from zero days after hatching (DAH 0) until DAH 134. The egg-yolk morphometrics of alevins-yolk length, yolk height, yolk volume and yolk weight-were statistically similar (p > 0.05) in both genotypes from DAH 0 to DAH 22. The total length, body height, and body weight of alevins and fry were statistically better (p > 0.05) in both genotypes until DAH 92 but thereafter, triploid had a significantly better growth performance (p < 0.05) over diploid fish until the completion of study at DAH 134. With that, triploid induction did not influence alevin yolk regions and body growth and fry somatic growth until around 3 months after hatching, but considerable growth enhancement was subsequently apparent.

Keywords

Acknowledgement

This research was a part of the project titled 'Future Fisheries Food Research Center' (201803932), funded by the Ministry of Oceans and Fisheries, Korea.

References

  1. Allen SK Jr. Flow cytometry: assaying experimental polyploid fish and shellfish. Aquaculture. 1983;33:317-28. https://doi.org/10.1016/0044-8486(83)90412-X
  2. Benfey TJ. The physiology and behavior of triploid fishes. Rev Fish Sci. 1999;7:39-67. https://doi.org/10.1080/10641269991319162
  3. Berrill IK, MacIntyre CM, Noble C, Kankainen M, Turnbull JF. Bio-economic costs and benefits of using triploid rainbow trout in aquaculture: reduced mortality. Aquac Econ Manag. 2012;16:365-83. https://doi.org/10.1080/13657305.2012.729245
  4. Blaxter JHS, Hempel G. The influence of egg size on herring larvae (Clupea harengus L.). ICES J Mar Sci. 1963;28:211-40. https://doi.org/10.1093/icesjms/28.2.211
  5. Bramick U, Puckhaber B, Langholz HJ, Horstgen-Schwark G. Testing of triploid tilapia (Oreochromis niloticus) under tropical pond conditions. Aquaculture. 1995;137:343-53. https://doi.org/10.1016/0044-8486(95)01104-8
  6. Chaiton JA, Allen SK Jr. Early detection of triploidy in the larvae of Pacific oysters, Crassostrea gigas, by flow cytometry. Aquaculture. 1985;48:35-43. https://doi.org/10.1016/0044-8486(85)90050-X
  7. Cherfas NB, Gomelsky B, Ben-Dom N, Peretz Y, Hulata G. Assessment of triploid common carp (Cyprinus carpio L.) for culture. Aquaculture. 1994;127:11-18. https://doi.org/10.1016/0044-8486(94)90187-2
  8. Felip A, Piferrer F, Zanuy S, Carrillo M. Comparative growth performance of diploid and triploid European sea bass over the first four spawning seasons. J Fish Biol. 2001;58:76-88. https://doi.org/10.1111/j.1095-8649.2001.tb00500.x
  9. Food and Agriculture Organization [FAO]. The state of world fisheries and aquaculture. Towards blue transformation. Rome: FAO; 2022.
  10. Galbreath PF, Jean WS, Anderson V, Thorgaard GH. Freshwater performance of all-female diploid and triploid Atlantic salmon. Aquaculture. 1994;128:41-9. https://doi.org/10.1016/0044-8486(94)90100-7
  11. Garner SR, Madison BN, Bernier NJ, Neff BD. Juvenile growth and aggression in diploid and triploid Chinook salmon Oncorhynchus tshawytscha (Walbaum). J Fish Biol. 2008;73:169-85. https://doi.org/10.1111/j.1095-8649.2008.01923.x
  12. Guo X, Hershberger WK, Myers JM. Growth and survival of intrastrain and interstrain rainbow trout (Oncorhynchus mykiss) triploids. J World Aquac Soc. 1990;21:250-6. https://doi.org/10.1111/j.1749-7345.1990.tb00536.x
  13. Happe A, Quillet E, Chevassus B. Early life history of triploid rainbow trout (Salmo gairdneri Richardson). Aquaculture. 1988;71:107-18. https://doi.org/10.1016/0044-8486(88)90278-5
  14. Hardy RW. Rainbow trout, Oncorhynchus mykiss. In: Webster CD, Lim C, editors. Nutrient requirements and feeding of finfish for aquaculture. New York, NY: CABI; 2002. p. 184-202.
  15. Hoitsy G, Woynarovich A, Moth-Poulsen T. Guide to the smallscale artificial propagation of trout. Budapest: FAO; 2012.
  16. Ihssen PE, McKay LR, McMillan I, Phillips RB. Ploidy manipulation and gynogenesis in fishes: cytogenetic and fisheries applications. Trans Am Fish Soc. 1990;119:698-717. https://doi.org/10.1577/1548-8659(1990)119<0698:PMAGIF>2.3.CO;2
  17. Jobling M. Bioenergetics: feed intake and energy partitioning. In: Rankin JC, Jensen FB, editors. Fish ecophysiology. Dordrecht: Springer; 1993. p. 1-44.
  18. Kim DS, Cho HJ, Park IS, Choi GC, Nam YK. Cytogenetic traits and gonad development of induced triploidy in far eastern catfish, Silurus asotus. Korean J Genet. 2001;23:55-62.
  19. Kim DS, Kim IB, Baik YG. A report of triploid rainbow trout production in Korea. Bull Korean Fish Soc. 1986;19:575-80.
  20. Kim DS, Kim IB, Baik YG. Early growth and gonadal development of triploid rainbow trout, Salmo gairdneri. J Aquac. 1988;1:41-51.
  21. Kim HS, Chung KH, Son JH. Comparison of different ploidy detection methods in Oncorhynchus mykiss, the rainbow trout. Fish Aquat Sci. 2017;20:29.
  22. KOSTAT. Korean statistics [Internet]. 2021 [cited 2022 Nov 14]. https://www.kostat.go.kr/board.es?mid=a10301010000&bid=225&list_no=423913& act=view&mainXml=Y
  23. Leary RF, Allendorf FW, Knudsen KL, Thorgaard GH. Heterozygosity and developmental stability in gynogenetic diploid and triploid rainbow trout. Heredity. 1985;54:219-25. https://doi.org/10.1038/hdy.1985.29
  24. Maxime V. The physiology of triploid fish: current knowledge and comparisons with diploid fish. Fish Fish. 2008;9:67-78. https://doi.org/10.1111/j.1467-2979.2007.00269.x
  25. McCarter NH. Verification of the production of triploid grass carp (Ctenopharyngodon idella) with hydrostatic pressure. N Z J Mar Freshw Res. 1988;22:501-5. https://doi.org/10.1080/00288330.1988.9516320
  26. Myoung JG, Kim YU. Morphological Study of Oncorhyncus spp. (Pisces: Salmonidae) in Korea-I egg development and morphology of alevin, fry and smolt of chum salmon, Oncorhynchus keta. Korean J Ichthyol. 1993;5:53-67.
  27. Piferrer F, Beaumont A, Falguiere JC, Flajshans M, Haffray P, Colombo L. Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture. 2009;293:125-56. https://doi.org/10.1016/j.aquaculture.2009.04.036
  28. Sheehan RJ, Shasteen SP, Suresh AV, Kapuscinski AR, Seeb JE. Better growth in all-female diploid and triploid rainbow trout. Trans Am Fish Soc. 1999;128:491-8. https://doi.org/10.1577/1548-8659(1999)128<0491:BGIAFD>2.0.CO;2
  29. Solar II, Donaldson EM, Hunter GA. Induction of triploidy in rainbow trout (Salmo gairdneri Richardson) by heat shock, and investigation of early growth. Aquaculture. 1984;42:57-67. https://doi.org/10.1016/0044-8486(84)90313-2
  30. Sumpter JP. Control of growth of rainbow trout (Oncorhynchus mykiss). Aquaculture. 1992;100:299-320. https://doi.org/10.1016/0044-8486(92)90386-Y
  31. Swarup H. Effect of triploidy on the body size, general organization and cellular structure in Gasterosteus aculeatus (L). J Genet. 1959;56:143-55.
  32. Thorgaard GH, Rabinovitch PS, Shen MW, Gall GAE, Propp J, Utter FM. Triploid rainbow trout identified by flow cytometry. Aquaculture. 1982;29:305-9. https://doi.org/10.1016/0044-8486(82)90144-2
  33. Tiwary BK, Kirubagaran R, Ray AK. The biology of triploid fish. Rev Fish Biol Fish. 2004;14:391-402. https://doi.org/10.1007/s11160-004-8361-8
  34. Valente LMP, Moutou KA, Conceicao LEC, Engrola S, Fernandes JMO, Johnston IA. What determines growth potential and juvenile quality of farmed fish species? Rev Aquac. 2013;5:S168-93. https://doi.org/10.1111/raq.12020
  35. Valenti RJ. Induced polyploidy in Tilapia aurea (Steindachner) by means of temperature shock treatment. J Fish Biol. 1975;7:519-28. https://doi.org/10.1111/j.1095-8649.1975.tb04627.x
  36. Van Eenennaam JP, Stocker RK, Thiery RG, Hagstrom NT, Doroshov SI. Egg fertility, early development and survival from crosses of diploid female × triploid male grass carp (Ctenopharyngodon idella). Aquaculture. 1990;86:111-25. https://doi.org/10.1016/0044-8486(90)90226-D
  37. Weber GM, Hostuttler MA, Cleveland BM, Leeds TD. Growth performance comparison of intercross-triploid, induced triploid, and diploid rainbow trout. Aquaculture. 2014;433:85-93. https://doi.org/10.1016/j.aquaculture.2014.06.003
  38. Withler RE, Beacham TD, Solar II, Donaldson EM. Freshwater growth, smolting, and marine survival and growth of diploid and triploid coho salmon (Oncorhynchus kisutch). Aquaculture. 1995;136:91-107. https://doi.org/10.1016/0044-8486(95)01036-X
  39. Withler RE, Craig Clarke W, Blackburn J, Baker I. Effect of triploidy on growth and survival of pre-smolt and postsmolt coho salmon (Oncorhynchus kisutch). Aquaculture. 1998;168:413-22. https://doi.org/10.1016/S0044-8486(98)00367-6
  40. Woynarovich A, Hoitsy G, Moth-Poulsen T. Small-scale rainbow trout farming. Rome: FAO; 2011.