DOI QR코드

DOI QR Code

Atelomix in Ethiopian Highland Lakes: their role in phytoplankton dynamics and ecological features

  • Received : 2022.11.26
  • Accepted : 2023.03.09
  • Published : 2023.07.31

Abstract

The objectives of this review were to synthesize the community structure of phytoplankton and the role of atelomix in the phytoplankton dynamics in Ethiopian highland lakes. Changes in a lake's physical structure, light dynamics, and availability of nutrients are closely associated with phytoplankton ecology, and phytoplankton assemblages provide insight into phytoplank- ton responses to these environmental changes. Based on the available information, a total of 173 species of phytoplankton are grouped under seven classes, Chlorophyceae (80 taxa), Bacillariophyceae (55 taxa), Cyanophyceae (24 taxa), Dinophyceae (6 taxa), Eugleonophyceae (6 taxa), Xanthophyceae (1 taxon), and Cryptophyceae (1 taxon) were recorded in five different tropical Ethiopian highland lakes. Chlorophyceae and Bacillariophyceae dominated in terms of species composition. Partial atelomixis, seasonality, and low nutrient concentrations seem to be the main drivers in structuring phytoplankton composition and abun-dances in Ethiopian highland lakes, characterized by a high diversity of atelomix-dependent benthic diatoms and desmids. Thus, this review will help understand the role of atelomix and nutrient availability in the phytoplankton composition and biomass of tropical highland lakes of Ethiopia.

Keywords

References

  1. Alemayehu T, Ayenew T, Kebede S. Hydrogeochemical and lake level changes in the Ethiopian Rift. J Hydrol. 2006;316:290-300. https://doi.org/10.1016/j.jhydrol.2005.04.024
  2. Arias A, Saiz E, Tiselius P, Calbet A. Trophic interactions and diel feeding rhythms of microzooplankton in a productive Swedish Fjord. ICES J Mar Sci. 2020;77:2718-28. https://doi.org/10.1093/icesjms/fsaa137
  3. Ayenew T. Major ions composition of the groundwater and surface water systems and their geological and geochemical controls in the Ethiopian volcanic terrain. SINET Ethiop J Sci. 2005;28:171-88.
  4. Barbosa FAR, Padisak J. The forgotten lake stratification pattern: atelomixis, and its ecological importance. Int Ver Theor Angew Limnol Verhandlungen. 2002;28:1385-95.
  5. Barbosa LG, Barbosa FAR, Araujo GJM, Bicudo CEM. The dominance of desmids in tropical monomictic lakes (SE Brazil). Limnetica. 2013;32:71-86.
  6. Barbosa LG, Barbosa FAR, Bicudo CEM. Inter-annual chemical stratification in Brazilian natural lakes: meromixis and hypolimnetic memory. Acta Limnol Bras. 2012;24:127-39. https://doi.org/10.1590/S2179-975X2012005000032
  7. Barbosa LG, Barbosa FAR, Bicudo CEM. Is thermal stability a factor that influences environmental heterogeneity and phytoplankton distribution in tropical lakes? Acta Limnol Bras. 2018;30:e207.
  8. Basu S, Mackey KRM. Phytoplankton as key mediators of the biological carbon pump: their responses to a changing climate. Sustainability. 2018;10:869.
  9. Baxter RM, Golobitsh DL. A note on the limnology of Lake Hayq, 1 Ethiopia. Limnol Oceanogr. 1970;15:144-9. https://doi.org/10.4319/lo.1970.15.1.0144
  10. Degefu F, Herzig A, Jirsa F, Schagerl M. First limnological records of highly threatened tropical high-mountain crater lakes in Ethiopia. Trop Conserv Sci. 2014;7:365-81. https://doi.org/10.1177/194008291400700302
  11. Degefu F, Schagerl M. The phytoplankton community of tropical high-mountain crater lake Wonchi, Ethiopia. Hydrobiologia. 2015;755:197-208. https://doi.org/10.1007/s10750-015-2233-1
  12. Degerman R, Lefebure R, Bystrom P, Bamstedt U, Larsson S, Andersson A. Food web interactions determine energy transfer efficiency and top consumer responses to inputs of dissolved organic carbon. Hydrobiologia. 2018;805:131-46. https://doi.org/10.1007/s10750-017-3298-9
  13. Demlie M, Ayenew T, Wohnlich S. Comprehensive hydrological and hydrogeological study of topographically closed lakes in highland Ethiopia: the case of Hayq and Ardibo. J Hydrol. 2007;339:145-58. https://doi.org/10.1016/j.jhydrol.2007.03.012
  14. Dersseh MG, Ateka A, Zimale FA, Worqlul AW, Moges MA, Dagnew DC, et al. Dynamics of eutrophication and its linkage to water hyacinth on lake Tana, upper Blue Nile, Ethiopia: understanding land-lake interaction and process. In: Proceedings of the ICAST 2019-7th EAI International Conference; 2019; Bahir Dar, Ethiopia.
  15. Ehrlich E, Gaedke U. Coupled changes in traits and biomasses cascading through a tritrophic plankton food web. Limnol Oceanogr. 2020;65:2502-14. https://doi.org/10.1002/lno.11466
  16. Fetahi T, Schagerl M, Mengistou S. Key drivers for phytoplankton composition and biomass in an Ethiopian highland lake. Limnologica. 2014;46:77-83. https://doi.org/10.1016/j.limno.2013.10.007
  17. Flores JA, Sierro FJ. Paleoceanography, biological proxies: coccolithophores. In: Elias SA, Mock CJ, editors. Encyclopedia of quaternary science. Amsterdam: Elsevier; 2013. p. 783-94.
  18. Ghedini G, Marshall DJ, Loreau M. Phytoplankton diversity affects biomass and energy production differently during community development. Funct Ecol. 2021;36:446-57. https://doi.org/10.1111/1365-2435.13955
  19. Goshu G, Aynalem S. Problem overview of the lake Tana basin. In: Stave K, Goshu G, Aynalem S, editors. Social and ecological system dynamics: characteristics, trends, and integration in the Lake Tana Basin, Ethiopia. Cham: Springer; 2017. p. 9-23.
  20. Gunkel G, Beulker C. Limnology of the Crater Lake Cuicocha, Ecuador, a cold water tropical lake. Int Rev Hydrobiol. 2009;94:103-25. https://doi.org/10.1002/iroh.200811071
  21. Jalil A, Zhang K, Qi L, Li Y, Aleem M. Phytoplankton response to long-term wind dynamics at large shallow lake Taihu (shallow lake phytoplankton response to long-term wind dynamics). Int J Environ Sci Technol. 2021;18:341-52. https://doi.org/10.1007/s13762-020-02827-5
  22. Kahsay A, Lemmens P, Triest L, De Meester L, Kibret M, Verleyen E, et al. Plankton diversity in tropical wetlands under different hydrological conditions (lake Tana, Ethiopia). Front Environ Sci. 2022;10:816892.
  23. Kase L, Geuer JK. Phytoplankton responses to marine climate change: an introduction. In: Proceedings of the 2017 Conference for Young Marine Researchers; 2018; Kiel, Germany. p. 55-71.
  24. Kebede E, Mariam ZG, Ahlgren I. The Ethiopian Rift valley lakes: chemical characteristics of a salinity-alkalinity series. Hydrobiologia. 1994;288:1-12. https://doi.org/10.1007/BF00006801
  25. Kebedew MG, Kibret AA, Tilahun SA, Belete MA, Zimale FA, Steenhuis TS. The relationship of lake morphometry and phosphorus dynamics of a tropical Highland lake: lake Tana, Ethiopia. Water. 2020;12:2243.
  26. Lewis WM Jr. Phytoplankton succession in lake Valencia, Venezuela. In: Munawar M, Talling JF, editors. Seasonality of freshwater phytoplankton: a global perspective. Dordrecht: Springer; 1986. p. 189-203.
  27. Li Y, Yu Z, Ji S, Meng J, Kong Q, Wang R, et al. Diverse drivers of phytoplankton dynamics in different phyla across the annual cycle in a freshwater lake. J Freshw Ecol. 2021;36:13-29. https://doi.org/10.1080/02705060.2020.1868586
  28. Manickam N, Bhavan PS, Santhanam P, Muralisankar T, Kumar SD, Balakrishnan S, et al. Phytoplankton biodiversity in the two perennial lakes of Coimbatore, Tamil Nadu, India. Acta Ecol Sin. 2020;40:81-9. https://doi.org/10.1016/j.chnaes.2019.05.014
  29. Melack JM. Temporal variability of phytoplankton in tropical lakes. Oecologia. 1979;44:1-7. https://doi.org/10.1007/BF00346388
  30. Mesman JP, Ayala AI, Goyette S, Kasparian J, Marce R, Markensten H, et al. Drivers of phytoplankton responses to summer wind events in a stratified lake: a modeling study. Limnol Oceanogr. 2022;67:856-73. https://doi.org/10.1002/lno.12040
  31. Mohammed A, Mengistou S, Fetahi T. Role of environmental variables and seasonal mixing in dynamics of the phytoplankton community in a Tropical Highland Lake Ardibo, Ethiopia. J Freshw Ecol. 2023;38:2170484.
  32. Mucheye T, Haro S, Papaspyrou S, Caballero I. Water quality and water hyacinth monitoring with the Sentinel-2A/B satellites in lake Tana (Ethiopia). Remote Sens. 2022;14:4921.
  33. Oda ACR, Bicudo CEM. Ecology of Peridinium gatunense and Peridinium umbonatum (Dinophyceae) in a shallow, tropical, oligotrophic reservoir (IAG pond), Sao Paulo, southeast Brazil. Acta Limnol Bras. 2006;18:165-80.
  34. Ogato T, Kifle D. Phytoplankton composition and biomass in tropical soda Lake Shala: seasonal changes in response to environmental drivers. Lakes & Reservoirs: Research & Management. 2017;22:168-78. https://doi.org/10.1111/lre.12169
  35. Padisak J, Crossetti LO, Naselli-Flores L. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia. 2009;621:1-19. https://doi.org/10.1007/s10750-008-9645-0
  36. Rango T, Bianchini G, Beccaluva L, Ayenew T, Colombani N. Hydrogeochemical study in the main Ethiopian Rift: new insights to the source and enrichment mechanism of fluoride. Environ Geol. 2009;58:109-18. https://doi.org/10.1007/s00254-008-1498-3
  37. Rohr T, Harrison C, Long MC, Gaube P, Doney SC. Eddy-modified iron, light, and phytoplankton cell division rates in the simulated southern ocean. Glob Biogeochem Cycles. 2020;34:e2019GB006380.
  38. Souza MBG, Barros CFA, Barbosa F, Hajnal E, Padisak J. Role of atelomixis in replacement of phytoplankton assemblages in Dom Helvecio lake, South-East Brazil. Hydrobiologia. 2008;607:211-24. https://doi.org/10.1007/s10750-008-9392-2
  39. Sui F, Zang S, Fan Y, Ye H. Effects of different saline-alkaline conditions on the characteristics of phytoplankton communities in the lakes of Songnen plain, China. PLOS ONE. 2016;11:e0164734.
  40. Talling JF, Lemoalle J. Ecological dynamics of tropical inland waters. Cambridge: Cambridge University Press; 1998.
  41. Tavera R, Martinez-Almeida V. Atelomixis as a possible driving force in the phytoplankton composition of Zirahuen, a warm-monomictic tropical lake. Hydrobiologia. 2005;533:199-208. https://doi.org/10.1007/s10750-004-2418-5
  42. Tessema A, Getahun A, Mengistou S, Fetahi T, Dejen E. Trend of phytoplankton composition and physicochemical water quality parameters of lake Hayq, Ethiopia. Int J Ecol Environ Sci. 2020;46:155-65.
  43. Tharik AM, Saraswathi VS, Kumaraguru A. Diversity of phytoplankton from inland waters of selected districts in Tamil Nadu: a review. Int J Ecol Environ. 2021;47:153-69.
  44. Tibebe D, Kassa Y, Melaku A, Lakew S. Investigation of spatio-temporal variations of selected water quality parameters and trophic status of lake Tana for sustainable management, Ethiopia. Microchem J. 2019;148:374-84. https://doi.org/10.1016/j.microc.2019.04.085
  45. Vallina SM, Cermeno P, Dutkiewicz S, Loreau M, Montoya JM. Phytoplankton functional diversity increases ecosystem productivity and stability. Ecol Modell. 2017;361:184-96. https://doi.org/10.1016/j.ecolmodel.2017.06.020
  46. Wagaw S, Mengistou S, Getahun A. Phytoplankton community structure in relation to physico-chemical factors in a tropical soda lake, lake Shala (Ethiopia). Afr J Aquat Sci. 2021;46:428-40. https://doi.org/10.2989/16085914.2021.1930999
  47. Wentzky VC, Tittel J, Jager CG, Bruggeman J, Rinke K. Seasonal succession of functional traits in phytoplankton communities and their interaction with trophic state. J Ecol. 2020;108:1649-63. https://doi.org/10.1111/1365-2745.13395
  48. Woldesenbet A, Mengistou S. Evaluation of multi-assemblage metrics and temperate indices as indicators of human impact in lake Ziway, Ethiopia. Ethiop J Biol Sci. 2020;19:61-80.
  49. Wondie A, Mengistou S. Duration of development, biomass and rate of production of the dominant copepods (calanoida and cyclopoida) in Lake Tana, Ethiopia. SINET: Ethiopian Journal of Science. 2006;29: 107-122.
  50. Wondie A, Mengistu S. Plankton of lake Tana. In: Stave K, Goshu G, Aynalem S, editors. Social and ecological system dynamics. Cham: Springer; 2017. p. 143-56.
  51. Wondmagegn T, Mengistou S. Effects of anthropogenic activities on macroinvertebrate assemblages in the littoral zone of lake Hawassa, a tropical Rift Valley lake in Ethiopia. Lakes Reserv Res Manag. 2020;25:61-71. https://doi.org/10.1111/lre.12303
  52. Wood RB, Talling JF. Chemical and algal relationships in a salinity series of Ethiopian inland waters. Hydrobiologia. 1988;158:29-67. https://doi.org/10.1007/BF00026266
  53. Wu JT, Kow LC. Alteration of phytoplankton assemblages caused by changes in water hardness in Feitsui reservoir, Taiwan. Bot Stud. 2010;51:521-9.