DOI QR코드

DOI QR Code

Impact of fine fillers on flowability, fiber dispersion, strength, and tensile strain hardening of UHPC

  • Chung-Chan Hung (Department of Civil Engineering, National Cheng Kung University) ;
  • Kuo-Wei Wen (Department of Civil Engineering, National Cheng Kung University) ;
  • Yueh-Ting Chen (Department of Civil Engineering, National Cheng Kung University)
  • 투고 : 2020.05.28
  • 심사 : 2023.08.11
  • 발행 : 2023.06.25

초록

While ultra-high performance concrete (UHPC) is commonly reinforced with micro straight steel fibers in existing applications, studies have indicated that the use of deformed steel macro-fibers leads to enhanced ductility and post-peak responses for UHPC structural elements, which is of particular importance for earthquake-resistant structures. However, there are potential concerns regarding the use of UHPC reinforced with macro-fibers due to the issues of workability and fiber distribution. The objective of this study was to address these issues by extensively investigating the restricted and non-restricted deformability, filling ability, horizontal and vertical velocities, and passing ability of UHPC containing macro hooked-end steel fibers. A new approach is suggested to examine the homogeneity of fiber distribution in UHPC. The influences of ultra-fine fillers and steel macro-fibers on the workability of fresh UHPC and the mechanics of hardened UHPC were examined. It was found that although increasing the ratio of quartz powder to cement led to an improvement in the workability and tensile strain hardening behavior of UHPC, it reduced the fiber distribution homogeneity. The addition of 1% volume fraction of macro-fibers in UHPC improved workability, but reduced its compressive strength, which is contrary to the effect of micro-fiber inclusion in UHPC.

키워드

과제정보

This study was sponsored in part by the Ministry of Science and Technology, Taiwan, under Grant No. 109-2636-E-006-015. The fellowship provided by the Foundation for the Advancement of Outstanding Scholarship is also greatly appreciated. The opinions, findings, and conclusions expressed in this paper are those of the authors, and do not necessarily reflect those of the sponsor.

참고문헌

  1. Aaleti, S. and Sritharan, S. (2019), "Quantifying bonding characteristics between UHPC and normal-strength concrete for bridge deck application", J. Bridge Eng., 24(6), 04019041. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001404
  2. ACI Committee 238 (2008), Report on Measurement of Workability and Rheology of Fresh Concrete, ACI 238.1R-08, American Concrete Institute, 70 pp.
  3. Aldahdooh, M.A.A., Bunnori, N.M. and Johari, M.M. (2013), "Evaluation of ultra-high-performance-fiber reinforced concrete binder content using the response surface method", Mater. Des. (1980-2015), 52, 957-965. https://doi.org/10.1016/j.matdes.2013.06.034
  4. Alkaysi, M. and El-Tawil, S. (2016), "Effects of variations in the mix constituents of ultra high performance concrete (UHPC) on cost and performance", Mater. Struct., 49(10), 4185-4200. https://doi.org/10.1617/s11527-015-0780-6
  5. ASTM C1611 / C1611M-1 (2014), Standard Test Method for Slump Flow of Self-Consolidating Concrete, ASTM International, West Conshohocken, PA, USA.
  6. ASTM C1621 / C1621M-14 (2014), Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring, ASTM International. West Conshohocken, PA, USA.
  7. ASTM C1856/C1856M-17 (2017), Standard Practice for Fabricating and Testing Specimens of Ultra-High Performance Concrete, ASTM International, West Conshohocken, PA, USA.
  8. ASTM C230 / C230M-14 (2014), Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. ASTM International. West Conshohocken, PA, USA.
  9. Atmajayanti, A.T., Hung, C.C., Yuen, T.Y. and Shih, R.C. (2021), "Influences of sodium lignosulfonate and high-volume fly ash on setting time and hardened state properties of engineered cementitious composites", Mater., 14(17), 4779. https://doi.org/10.3390/ma14174779
  10. Basha, A., Fayed, S. and Mansour, W. (2020), "Flexural strengthening of RC one way solid slab with Strain Hardening Cementitious Composites (SHCC)", Adv. Concrete Constr., Int. J., 9(5), 511-527. https://doi.org/10.12989/acc.2020.9.5.511
  11. Bermudez, M., Wen, K.W. and Hung, C.C. (2022), "A comparative study on the shear behavior of UHPC beams with macro hooked-end steel fibers and PVA fibers", Mater., 15(4), 1485. https://doi.org/10.3390/ma15041485
  12. Boulekbache, B., Hamrat, M., Chemrouk, M. and Amziane, S. (2010), "Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material", Constr. Build. Mater., 24(9), 1664-1671. https://doi.org/10.1016/j.conbuildmat.2010.02.025
  13. Concrete, S.C. (2007), ACI 237R-07, American Concrete Institute: Farmington Hills, MI, USA.
  14. Do, T.D.D., Yen, K.J., Yen, C.H. and Hung, C.C. (2022), "Impact of tension stiffening on the tensile and flexural behavior of ECC ferrocement", Constr. Build. Mater., 329, 127201. https://doi.org/10.1016/j.conbuildmat.2022.127201
  15. Dupont, D. and Vandewalle, L. (2005), "Distribution of steel fibres in rectangular sections", Cem. Concr. Compos., 27(3), 391-398. https://doi.org/10.1016/j.cemconcomp.2004.03.005
  16. Duval, R. and Kadri, E.H. (1998), "Influence of silica fume on the workability and the compressive strength of high-performance concretes", Cement Concrete Res., 28(4), 533-547. https://doi.org/10.1016/S0008-8846(98)00010-6
  17. EFNARC, S. (2002), Guidelines for self-compacting concrete, Association House, 32, 34, London, UK.
  18. Fehling, E., Schmidt, M., Walraven, J., Leutbecher, T. and Frohlich, S. (2014), Ultra-high performance concrete UHPC: Fundamentals, design, examples, John Wiley & Sons.
  19. Feng, J., Gao, X., Li, J., Dong, H., Yao, W., Wang, X. and Sun, W. (2019), "Influence of fiber mixture on impact response of ultrahigh-performance hybrid fiber reinforced cementitious composite", Compos. Part B: Eng., 163, 487-496. https://doi.org/10.1016/j.compositesb.2018.12.141
  20. Ferrier, E., Confrere, A., Michel, L., Chanvillard, G. and Bernardi, S. (2016), "Shear behaviour of new beams made of UHPC concrete and FRP rebar", Compos. Part B: Eng., 90, 1-13. https://doi.org/10.1016/j.compositesb.2015.11.022
  21. Grabowski, E. and Gillott, J.E. (1989), "Modification of engineering behaviour of thermal cement blends containing silica fume and silica flour by replacing flour with silica sand", Cement Concrete Res., 19(4), 499-508. https://doi.org/10.1016/0008-8846(89)90001-X
  22. Hsiao, P.C., Chou, S.C. and Hung, C.C. (2023), "A novel seismic strengthening method for RC frames: Precast ultra-high performance concrete braces", J. Build. Eng., 71, 106592. https://doi.org/10.1016/j.jobe.2023.106592
  23. Hung, C.C. and Hsieh, P.L. (2020), "Comparative study on shear failure behavior of squat high-strength steel reinforced concrete shear walls with various high-strength concrete materials", Struct., 23, 56-68. https://doi.org/10.1016/j.istruc.2019.11.002
  24. Hung, C.C. and Hung, H.H. (2020), "Potential of sodium sulfate solution for promoting the crack-healing performance for strain-hardening cementitious composites", Cement Concrete Compos., 106, 103461. https://doi.org/10.1016/j.cemconcomp.2019.103461
  25. Hung, C.C., Lee, H.S. and Chan, S.N. (2019), "Tension-stiffening effect in steel-reinforced UHPC composites: Constitutive model and effects of steel fibers, loading patterns, and rebar sizes", Compos. Part B: Eng., 158, 269-278. https://doi.org/10.1016/j.compositesb.2018.09.091
  26. Hung, C.C., Chen, Y.T. and Yen, C.H. (2020), "Workability, fiber distribution, and mechanical properties of UHPC with hooked end steel macro-fibers", Constr. Build. Mater., 260, 119944. https://doi.org/10.1016/j.conbuildmat.2020.119944
  27. Hung, C.C., El-Tawil, S. and Chao, S.H. (2021a), "A review of developments and challenges for UHPC in structural engineering: Behavior, analysis, and design", J. Struct. Eng., 147(9), 03121001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003073
  28. Hung, C.C., Kuo, C.W. and Shao, Y. (2021b), "Cast-in-place and prefabricated UHPC jackets for retrofitting shear-deficient RC columns with different axial load levels", J. Build. Eng., 44, 103305. https://doi.org/10.1016/j.jobe.2021.103305
  29. Hung, C.C., Yuen, T.Y., Huang, C.W. and Yen, C.H. (2022), "Tension lap splices in UHPC beams: Influence of rebar size, steel fibers, splice length, and coarse aggregate", J. Build. Eng., 55, 104716. https://doi.org/10.1016/j.jobe.2022.104716
  30. Hung, C.C., Hsiao, H.J., Shao, Y. and Yen, C.H. (2023), "A comparative study on the seismic performance of RC beam-column joints retrofitted by ECC, FRP, and concrete jacketing methods", J. Build. Eng., 64, 105691. https://doi.org/10.1016/j.jobe.2022.105691
  31. Kang, S.T. (2020), "The use of river sand for fine aggregate in UHPC and the effect of its particle size", Adv. Concrete Constr., Int. J., 10(5), 431-441. https://doi.org/10.12989/acc.2020.10.5.431
  32. Kang, S.T., Lee, Y., Park, Y.D. and Kim, J.K. (2010), "Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber", Compos. Struct., 92(1), 61-71. https://doi.org/10.1016/j.compstruct.2009.06.012
  33. Kim, D.J., Park, S.H., Ryu, G.S. and Koh, K.T. (2011), "Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers", Constr. Build. Mater., 25(11), 4144-4155. https://doi.org/10.1016/j.conbuildmat.2011.04.051
  34. Kumar, C.N.S., Krishna, P.V.V.S.S.R. and Kumar, D.R. (2017), "Effect of fiber and aggregate size on mode-I fracture parameters of high strength concrete", Adv. Concrete Constr., Int. J., 5(6), 613-624. https://doi.org/10.12989/acc.2017.5.6.613
  35. Kurama, Y.C. and Hung, C.C. (2023), "RC Structures with high and ultrahigh-performance materials", J. Struct. Eng., 149(2), 02022003. https://doi.org/10.1061/JSENDH.STENG-12072
  36. Lampropoulos, A.P., Paschalis, S.A., Tsioulou, O.T. and Dritsos, S.E. (2016), "Strengthening of reinforced concrete beams using ultra high performance fibre reinforced concrete (UHPFRC)", Eng. Struct., 106, 370-384. https://doi.org/10.1016/j.engstruct.2015.10.042
  37. Laskar, A.I. and Talukdar, S. (2008), Rheology of steel fiber reinforced concrete.
  38. Lin, T.H., Chang, C.T., Yang, B.H., Hung, C.C. and Wen, K.W. (2023), "AI-powered shotcrete robot for enhancing structural integrity using ultra-high performance concrete and visual recognition", Automat. Constr., 155, 105038. https://doi.org/10.1016/j.autcon.2023.105038
  39. Mosaberpanah, M.A. and Eren, O. (2017), "Effect of quartz powder, quartz sand and water curing regimes on mechanical properties of UHPC using response surface modelling", Adv. Concrete Constr., Int. J., 5(5), 481-492. https://doi.org/10.12989/acc.2017.5.5.481
  40. Naaman, A.E. and Reinhardt, H.W. (2006), "Proposed classification of HPFRC composites based on their tensile response", Mater. Struct., 39(5), 547-555 https://doi.org/10.1617/s11527-006-9103-2
  41. Oey, T., Kumar, A., Bullard, J.W., Neithalath, N. and Sant, G. (2013), "The filler effect: the influence of filler content and surface area on cementitious reaction rates", J. Am. Ceramic Soc., 96(6), 1978-1990. https://doi.org/10.1111/jace.12264
  42. O'Neil III, E.F. (2008), "On engineering the microstructure of high-performance concretes to improve strength, rheology, toughness, and frangibility", Dissertation Abstracts International, 69(11).
  43. Palacios, G. (2015), "Performance of full-scale ultra-high performance fiber-reinforced concrete column subjected to extreme earthquake-type loading and effect of surface preparation on the cohesion and friction factors of the aashto interface shear equation", The University of Texas at Arlington.
  44. Park, S.H., Kim, D.J., Ryu, G.S. and Koh, K.T. (2012), "Tensile behavior of ultra high performance hybrid fiber reinforced concrete", Cement Concrete Compos., 34(2), 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009
  45. Parvin, Y.A., Shaghaghi, T.M., Pourbaba, M., Mirrezaei, S.S. and Zandi, Y. (2022), "Experimental investigation on UHPC beams reinforced with GFRP and steel rebars and comparison with prediction equations", Adv. Concrete Constr., Int. J., 14(1), 45-55. https://doi.org/10.12989/acc.2022.14.1.045
  46. Pham, H.D., Khuc, T., Nguyen, T.V., Cu, H.V., Le, D.B. and Trinh, T.P. (2020), "Investigation of flexural behavior of a prestressed girder for bridges using nonproprietary UHPC", Adv. Concrete Constr., Int. J., 10(1), 71-79. https://doi.org/10.12989/acc.2020.10.1.071
  47. Qi, J., Wang, J. and Feng, Y. (2019), "Shear performance of an innovative UHPFRC deck of composite bridge with coarse aggregate", Adv. Concrete Constr., Int. J., 7(4), 219-229. https://doi.org/10.12989/acc.2019.7.4.219
  48. Qi, J., Tang, Y., Cheng, Z., Xu, R. and Wang, J. (2020), "Static behavior of stud shear connectors with initial damage in steel-UHPC composite bridges", Adv. Concrete Constr., Int. J., 9(4), 413-421. https://doi.org/10.12989/acc.2020.9.4.413
  49. Ranade, R., Li, V.C., Stults, M.D., Heard, W.F. and Rushing, T.S. (2013), "Composite Properties of High-Strength, High-Ductility Concrete", ACI Mater. J., 110(4).
  50. Ren, L., Fang, Z. and Wang, K. (2019), "Design and behavior of super-long span cable-stayed bridge with CFRP cables and UHPC members", Compos. Part B: Eng., 164, 72-81. https://doi.org/10.1016/j.compositesb.2018.11.060
  51. Richard, P. and Cheyrezy, M. (1995), "Composition of reactive powder concretes", Cement Concrete Res., 25(7), 1501-1511. https://doi.org/10.1016/0008-8846(95)00144-2
  52. Shao, Y., Kuo, C.W. and Hung, C.C. (2021), "Seismic performance of full-scale UHPC-jacket-strengthened RC columns under high axial loads", Eng. Struct., 243, 112657. https://doi.org/10.1016/j.engstruct.2021.112657
  53. Sharma, R. and Bansal, P.P. (2019), "Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete", Adv. Concrete Constr., Int. J., 8(1), 21-31. https://doi.org/10.12989/acc.2019.8.1.021
  54. Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z. and Fang, Z. (2015a), "A review on ultra high performance concrete: Part I. Raw materials and mixture design", Constr. Build. Mater., 101, 741-751. https://doi.org/10.1016/j.conbuildmat.2015.10.088
  55. Shi, C., Wang, D., Wu, L. and Wu, Z. (2015b), "The hydration and microstructure of ultra high-strength concrete with cement-silica fume-slag binder", Cement Concrete Compos., 61, 44-52. https://doi.org/10.1016/j.cemconcomp.2015.04.013
  56. Shin, H.O., Min, K.H. and Mitchell, D. (2017), "Confinement of ultra-high-performance fiber reinforced concrete columns", Compos. Struct., 176, 124-142. https://doi.org/10.1016/j.compstruct.2017.05.022
  57. Soliman, A.M. and Nehdi, M.L. (2012), "Effect of natural wollastonite microfibers on early-age behavior of UHPC", J. Mater. Civil Eng., 24(7), 816-824. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000473
  58. Standard, A.S.T.M. (2015), ASTM C39 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International.
  59. Van Tuan, N., Ye, G., Van Breugel, K., Fraaij, A.L. and Dai Bui, D. (2011), "The study of using rice husk ash to produce ultra high performance concrete", Constr. Build. Mater., 25(4), 2030-2035. https://doi.org/10.1016/j.conbuildmat.2010.11.046
  60. Wu, Z., Shi, C., He, W. and Wu, L. (2016), "Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete", Constr. Build. Mater., 103, 8-14. https://doi.org/10.1016/j.conbuildmat.2015.11.028
  61. Wu, Z., Khayat, K.H. and Shi, C. (2018), "How do fiber shape and matrix composition affect fiber pullout behavior and flexural properties of UHPC?", Cement Concrete Compos., 90, 193-201. https://doi.org/10.1016/j.cemconcomp.2018.03.021
  62. Wu, X., Yu, S., Tao, X., Chen, B., Liu, H., Yang, M. and Kang, T. H.K. (2020), "Behavior of UHPC-RW-RC wall panel under various temperature and humidity conditions", Adv. Concrete Constr., Int. J., 9(5), 459-467. https://doi.org/10.12989/acc.2020.9.5.459
  63. Yang, I.H., Joh, C. and Kim, B.S. (2010), "Structural behavior of ultra high performance concrete beams subjected to bending", Eng. Struct., 32(11), 3478-3487. https://doi.org/10.1016/j.engstruct.2010.07.017
  64. Yazici, H., Yigiter, H., Karabulut, A.S. and Baradan, B. (2008), "Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete", Fuel, 87(12), 2401-2407. https://doi.org/10.1016/j.fuel.2008.03.005
  65. Yazici, H., Yardimci, M.Y., Yigiter, H., Aydin, S. and Turkel, S. (2010), "Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag", Cement Concrete Compos., 32(8), 639-648. https://doi.org/10.1016/j.cemconcomp.2010.07.005
  66. Yoo, D.Y. and Kim, S. (2019), "Comparative pullout behavior of half-hooked and commercial steel fibers embedded in UHPC under static and impact loads", Cement Concrete Compos., 97, 89-106. https://doi.org/10.1016/j.cemconcomp.2018.12.023
  67. Yoo, D.Y., Lee, J.H. and Yoon, Y.S. (2013), "Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites", Compos. Struct., 106, 742-753. https://doi.org/10.1016/j.compstruct.2013.07.033
  68. Yu, R., Spiesz, P. and Brouwers, H.J.H. (2014), "Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC)", Cement Concrete Res., 56, 29-39. https://doi.org/10.1016/j.cemconres.2013.11.002
  69. Yuan, J.S. and Hadi, M.N. (2017), "Bond-slip behaviour between GFRP I-section and concrete", Compos. Part B: Eng., 130, 76-89. https://doi.org/10.1016/j.compositesb.2017.07.060
  70. Zhang, Y.S., Sun, W., Liu, S.F., Jiao, C.J. and Lai, J.Z. (2008), "Preparation of C200 green reactive powder concrete and its static-dynamic behaviors", Cement Concrete Compos., 30(9), 831-838. https://doi.org/10.1016/j.cemconcomp.2008.06.008