DOI QR코드

DOI QR Code

Effect of Brussels Sprouts Extract on Inflammatory Cytokine Inhibition

방울양배추 추출물의 염증성 사이토카인 억제에 미치는 영향

  • 이재혁 (남부대학교 응급구조학과) ;
  • 박정숙 (남부대학교 간호학과)
  • Received : 2023.06.07
  • Accepted : 2023.08.20
  • Published : 2023.08.28

Abstract

This paper was conducted to examine the effect of Brussels Sprouts Extract on the inhibition of pro-inflammatory cytokines. The inflammatory response is manifested by mediators such as reactive oxygen species and inflammatory cytokines such as TNF-α, IL-1β, and IL-8. Therefore, this paper examined the toxicity to cells using the MTS assay, stimulated RAW264.7 macrophages with lipopolysaccharide (LPS), and stimulated reactive oxygen species such as NO and TNF-α, IL-1β, and IL-8. Inhibition of inflammatory cytokines after treatment with 10 mg/mL, 100 mg/mL, and 1000 mg/mL of Brussels Sprouts Extract was investigated. As a result of the experiment, Brussels Sprouts Extract inhibited NO production, TNF-α and IL-8 in a concentration-dependent manner without cytotoxicity, and showed significant inhibition especially at a concentration of 1000 mg/mL. Brussels Sprouts Extract, which inhibits the production of inflammatory cytokines, suggests the possibility of reducing inflammatory response and controlling inflammation, and can be seen as providing potential as a health functional food or prevention and treatment of inflammation.

본 논문은 Brussels Sprouts Extract의 염증성사이토카인의 억제에 미치는 영향을 살펴보기 위하여 진행되었다. 염증반응은 활성산소와 같은 매개인자와 염증성 사이토카인인 TNF-α나 IL-1β, IL-8에 의해 나타난다. 이에 본 논문은 MTS assay를 이용하여 세포에 대한 생존율을 살펴보고, RAW264.7 대식세포에 lipopolysaccharide (LPS) 자극에 의해 생성된 NO와 TNF-α나 IL-1β, IL-8과 같은 염증성 사이토카인에 대한 억제를 살펴보았다. Brussels Sprouts Extract 10mg/mL, 100mg/mL, 1000mg/mL 농도로 처리 후 억제 정도를 살펴본 결과, Brussels Sprouts Extract은 세포 독성 없이 NO생성과 TNF-α, IL-8을 농도 의존적으로 억제하였으며, 특히 1000mg/mL 농도에서는 유의한 억제를 보였다. 염증성 사이토카인의 생성을 저해한 Brussels Sprouts Extract은 염증반응 감소와 염증조절의 가능성을 시사하고 건강기능성 식품이나 염증 예방 및 치료제로서 잠재력을 제공한다고 볼 수 있다.

Keywords

Acknowledgement

This study was supported(in part) by research funds from Nambu University(2022).

References

  1. K. A. Steinmetz & J. D. Potter. (1996). Vegetables, fruit, and cancer prevention: a review. Journal of the American Dietetic Association, 96, 1027-1039. DOI : 10.1016/S0002-8223(96)00273-8
  2. G. R. Fenwick & P. K. Heaney. (1983). Glucosinolates and their breakdown products in cruciferous crops, foods and feeding stuffs. Food Chemistry, 11, 249-271. DOI : 10.1080/10408398209527361
  3. G. van Poppel , D. T. Verhoeven , H. Verhagen & R. A. Goldbohm. (1999). Brassica vegetables and cancer prevention. Epidemiology and mechanisms. Advances in Experimental Medicine and Biology, 472, 159-168. DOI : 10.1007/978-1-4757-3230-6_14
  4. T. M. Becker & J. A. Juvik. (2016). The role of glucosinolate hydrolysis products from Brassica vegetable consumption in inducing antioxidant activity and reducing cancer incidence. Diseases, 4, 22-31. DOI : 10.3390/diseases4020022
  5. C. Grundemann & R..Huber. (2018). Chemoprevention with isothiocyanates-From bench to bedside. Cancer Lett., 414, 26-34. DOI : 10.1016/j.canlet.2017.10.033
  6. W. Mun, J. G. Kim & J. W. Lee. (2014). Cabbage and vegetable. In Horticulture Crop Science. Korea National Open University Publishing, Seoul, Korea. p. 355.
  7. M. H. Combs & M. Ernst. (2019). Brussels sprouts. University of Kentucky College of Agriculture, Food and Environment. Available from: http://www.uky.edu/ccd/sites/
  8. E. S. Hwang. (2019). Effect of Cooking Methods on Bioactive Compound Contents and Antioxidant Activities of Brussels Sprouts. Journal of the Korean Society of Food Science and Nutrition, 48(10), 1061-1069. DOI : 10.3746/jkfn.2019.48.10.1061
  9. A. C. Kurilich, G. J. Tsau, A. Brown, L. Howard, B. P. Klein, E. H. Jeffery, M. Kushad, M. A. Wallig & J. A. Juvik. (1999). Carotene, tocopherol, and ascorbate contents in subspecies of Brassica oleracea. Journal of Agricultural and Food Chemistry, 47, 1576-1581. DOI : 10.1021/jf9810158
  10. E. Sikora, E. Cieslik, T. Leszczynska, A. Filipiak-Florkiewicz & P. M. Pisulewski. (2008). The antioxidant activity of selected cruciferous vegetables subjected to aquathermal processing. Food Chemistry., 107, 55-59. DOI : 10.1016/j.foodchem.2007.07.023
  11. A. Podsedek, D. Sosnowska, M. Redzynia & B. Anders. (2006). Antioxidant capacity and content of Brassica oleracea dietary antioxidants. International Journal of Food Science & Technologyt, 441, 49-58. DOI : 10.1111/j.1365-2621.2006.01260.x
  12. B. Rocca & G. A. FitzGerald (2002). Cyclooxygenases and prostaglandins shaping up the immune response. International Immunopharmacology, 2, 603-607. DOI : 10.1016/s1567-5769(01)00204-1
  13. C. Craing. (1994). Introduction to CNS Pharmacology. In Craing C. Stitzel R(eds.). Modern Pharmacology, 329-337.
  14. R. MacSween & K. Whaley. (1992). Muir's Textbook of Pathology, 13th ed. London: Edward Arnold.
  15. H. Kwqamata, H. Ochiai , N. Mantani & K. Terasawa. (2000). Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS activated RAW 264.7 cells, a murine macrophage cell line. The American Journal of Chinese Medicin, 28, 217-226. DOI : 10.1142/S0192415X0000026X
  16. R. Weller (1997). Nitric oxide - a newly discovered chemical transmitter in human skin. British Journal of Dermatology, 137, 665-671.
  17. M. Masaki M. Matsushita, & K. Wakitani. (1998). Inhibitory effect of JTE-522, a novel prostaglandin H synthase-2 inhibitor, on adjuvant-induced arthritis and bone changes in rats. Inflammation Research, 47, 187-194. DOI : 10.1007/s000110050316
  18. J. H. Koh, H. Kim, J. H. Hwang & K. W. Yu. (2019). Anti-oxidative and Immunomodulating Activities of Solvent Extracts from Broccoli (Brassica oleracea) Sprouts. Korean Journal of Food and Nutrition, 32(1), 001-010. DOI : 10.9799/ksfan.2019.32.1.001
  19. R. SoRelle. (1998). Nobel Prize awarded to scientists for nitric oxide discoveries. Circulation, 98, 2365-2366. https://doi.org/10.1161/01.CIR.98.22.2365
  20. P.A.Brennan, I. P. Downie, J. D. Langdon & G. A. Zaki. (1999). Emerging role of nitric oxide in cancer. British Journal of Oral and Maxillofacial Surgeryr, 37, 370-373. DOI : 10.1054/bjom.1999.0201
  21. H. W. Lee, C. G. Lee, D. K. Rhee, S, H. Um & S. N Pyo. (2017). Sinigrin inhibits production of inflammatory mediators by suppressing NF-κ B/MAPK pathways or NLRP3 inflammasome activation in macrophages. International Immunoarmacology, 45, 163-173. DOI : 10.1016/j.intimp.2017.01.0