DOI QR코드

DOI QR Code

Isolation of Debaryomyces hansenii and selection of an optimal strain to improve the quality of low-grade beef rump (middle gluteal) during dry aging

  • Yoonjeong Yoo (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Hyemin Oh (Risk Analysis Research Center, Sookmyung Women's University) ;
  • Yohan Yoon (Department of Food and Nutrition, Sookmyung Women's University)
  • Received : 2022.12.19
  • Accepted : 2023.05.03
  • Published : 2023.09.01

Abstract

Objective: The objective of this study was to evaluate the effect of Debaryomyces hansenii isolated from dry-aged beef on the tenderness and flavor attributes of low-grade beef during dry aging. Methods: Five D. hansenii strains were isolated from dry-aged beef samples. The rump of low-grade beef was inoculated with individual D. hansenii isolates and subjected to dry aging for 4 weeks at 5℃ and 75% relative humidity. Microbial contamination levels, meat quality attributes, and flavor attributes in the dry-aged beef were measured. Results: Of the five isolates, the shear force of dry-aged beef inoculated with SMFM201812-3 and SMFM201905-5 was lower than that of control samples. Meanwhile, all five isolates increased the total free amino acid, glutamic acid, serine, glycine, alanine, and leucine contents in dry-aged beef. In particular, the total fatty acid, palmitic acid, and oleic acid contents in samples inoculated with D. hansenii SMFM201905-5 were higher than those in control samples. Conclusion: These results indicate that D. hansenii SMFM201905-5 might be used to improve the quality of beef during dry aging.

Keywords

References

  1. Andrade MJ, Cordoba JJ, Casado EM, Cordoba MG, Rodriguez M. Effect of selected strains of Debaryomyces hansenii on the volatile compound production of dry fermented sausage "salchichon." Meat Sci 2010;85:256-64. https://doi.org/10.1016/j.meatsci.2010.01.009 
  2. Ozturk I, Sagdic O, Yetim H. Effects of autochthonous yeast cultures on some quality characteristics of traditional turkish fermented sausage "sucuk." Food Sci Anim Resour 2021;41:196-213. https://doi.org/10.5851/kosfa.2020.e89 
  3. Seleshe S, and Kang SN. Effect of different Pediococcus pentosaceus and Lactobacillus plantarum strains on quality characteristics of dry fermented sausage after completion of ripening period. Food Sci Anim Resour 2021;41:636-49. https://doi.org/10.5851/kosfa.2021.e21 
  4. Oh H, Lee HJ, Lee J, Jo C, Yoon Y. Identification of microorganisms associated with the quality improvement of dry-aged beef through microbiome analysis and DNA sequencing, and evaluation of their effects on beef quality. J Food Sci 2019;84:2944-54. https://doi.org/10.1111/1750-3841.14813 
  5. Flores M, Corral S, Cano-Garcia L, Salvador A, Belloch C. Yeast strains as potential aroma enhancers in dry fermented sausages. Int J Food Microbiol 2015;212:16-24. https://doi.org/10.1016/j.ijfoodmicro.2015.02.028
  6. Aquilanti LS, Santarelli G, Silvestri A, Osimani A, Petruzzelli A, Clementi F. The microbial ecology of a typical Italian salami during its natural fermentation. Int J Food Microbiol 2007;120:136-45. https://doi.org/10.1016/j.ijfoodmicro.2007.06.010 
  7. Bolumar T, Sanz Y, Aristoy MC, Toldra F. Purification and characterization of a prolyl aminopeptidase from Debaryomyces hansenii. Appl Environ Microbiol 2003;69:227-32. https://doi.org/10.1128/aem.69.1.227-232.2003 
  8. Patrignani F, Iucci L, Vallicelli M, Guerzoni ME, Gardini F, Lanciotti R. Role of surface-inoculated Debaryomyces hansenii and Yarrowia lipolytica strains in dried fermented sausage manufacture. Part 1: Evaluation of their effects on microbial evolution, lipolytic and proteolytic patterns. Meat Sci 2007;75:676-86. https://doi.org/10.1016/j.meatsci.2006.09.017 
  9. Kim H, Shin M, Ryu S, et al. Evaluation of probiotic characteristics of newly isolated lactic acid bacteria from dry-aged hanwoo beef. Food Sci Anim Resour 2021;41:468-80. https://doi.org/10.5851/kosfa.2021.e11 
  10. Park S, Kim H. Quality properties of Bulogogi sauce with crust derived from dry-aged beef loin. Food Sci Anim Resour 2021;41:247-60. https://doi.org/10.5851/kosfa.2020.e95 
  11. Hodges JH, Cahill VR, Ockerman HW. Effect of vacuum packaging on weight loss, microbial growth and palatability of fresh beef wholesale cuts. J Food Sci 1974;39:143-6. https://doi.org/10.1111/j.1365-2621.1974.tb01009.x 
  12. Dashdorj D, Tripathi VK, Cho S, Kim Y, Hwang I. Dry aging of beef; Review. J Anim Sci Technol 2016;58:20. https://doi.org/10.1186/s40781-016-0101-9 
  13. Jin S, Yim D. Comparison of effects of two aging methods on the physicochemical traits of pork loin. Food Sci Anim Resour 2020;40:844-51. https://doi.org/10.5851/kosfa.2020.e22 
  14. Flores M, Olivares A. Handbook of fermented meat and poultry. Hoboken, NJ, USA: Wiley; 2007. pp. 217-25. 
  15. Santos NN, Santos-Mendonca RC, Sanz Y, Bolumar T, Aristoy MC, Toldra F. Hydrolysis of pork muscle sarcoplasmic proteins by Debaryomyces hansenii. Int J Food Microbiol 2001;68:199-206. https://doi.org/10.1016/s0168-1605(01)00489-5 
  16. Smith S, Lunt D, Chung K, Choi C, Tume R, Zembayashi M. Adiposity, fatty acid composition, and delta-9 desaturase activity during growth in beef cattle. Anim Sci J 2006;77:478-86. https://doi.org/10.1111/j.1740-0929.2006.00375.x 
  17. Ordonez JA, de la Hoz L. Mediterranean products. Handbook of fermented meat and poultry. Oxford, UK: Blackwell Publishing; 2007. pp. 333-48. 
  18. Cano-Garcia L, Belloch C, Flores M. Impact of Debaryomyces hansenii strains inoculation on the quality of slow dry-cured fermented sausages. Meat Sci 2014;96:1469-77. https://doi.org/10.1016/j.meatsci.2013.12.011 
  19. Ramos-Moreno L, Ruiz-Perez F, Rodriguez-Castro E, Ramos J. Debaryomyces hansenii is a real tool to improve a diversity of characteristics in sausages and dry-meat products. Microorganisms 2021;9:1512. https://doi.org/10.3390/microorganisms9071512 
  20. Perea-Sanz L, Peris D, Belloch C, Flores M. Debaryomyces hansenii metabolism of sulfur amino acids as precursors of volatile sulfur compounds of interest in meat products. J Agric Food Chem 2019;67:9335-43. https://doi.org/10.1021/acs.jafc.9b03361 
  21. Buxton R. Blood agar plates and hemolysis protocols. Am Soc Microbiol 2005;15:1-9. 
  22. Sadeghi-Aliabadi H, Mohammadi F, Fazeli H, Mirlohi M. Effects of Lactobacillus plantarum A7 with probiotic potential on colon cancer and normal cells proliferation in comparison with a commercial strain. Iran J Basic Med Sci 2014;17:815-9. 
  23. Calicioglu M, Sofos JN, Kendall PA. Influence of marinades on survival during storage of acid-adapted and nonadapted Listeria monocytogenes inoculated post-drying on beef jerky. Int J Food Microbiol 2003;86:283-92. https://doi.org/10.1016/S0168-1605(02)00565-2 
  24. Park JA, Joo SY, Hwang HJ, et al. Effects of freezing storage temperature on the storage stability of beef. Korean J Food Sci Technol 2016;48:301-5. https://doi.org/10.9721/KJFST.2016.48.4.301 
  25. Hwang YH, Joo ST. Fatty acid profiles, meat quality, and sensory palatability of grain-fed and grass-fed beef from Hanwoo, American, and Australian crossbred cattle. Food Sci Anim Resour 2017;37:153-61. https://doi.org/10.5851/kosfa.2017.37.2.153 
  26. Kim J, Kim M, Kang C, et al. The Use of MTT assay, in vitro and ex vivo, to predict the adiosensitivity of colorectal cancer. J korean Soc Ther Radiol Oncol 2008;26:166-72. https://doi.org/10.3857/jkstro.2008.26.3.166 
  27. Alvarez S, Mullen AM, Hamill R, O'Neill E, Alvarez C. Dryaging of beef as a tool to improve meat quality. Impact of processing conditions on the technical and organoleptic meat properties. In: Advances in Food and Nutrition Research. Cambridge, MA, USA: Academic Press; 2021. pp. 83-100. https://doi.org/10.1016/bs.afnr.2020.10.001 
  28. Bouton PE, Hariis PT, Shorthose WR. Effect of ultimate pH upon the water-holding capacity and tenderness of mutton. J Food Sci 1971;36:435-9. https://doi.org/10.1111/j.1365-2621.1971.tb06382.x 
  29. Johnson JL, Doyle MP, Cassens RG. Survival of Listeria monocytogenes in ground beef. Int J Food Microbiol 1988;6:243-7. https://doi.org/10.1016/0168-1605(88)90016-5 
  30. Demeyer D, Vandekerckhove P, Moermans R. Compounds determining pH in dry sausage. Meat Sci 1979;3:161-7. https://doi.org/10.1016/0309-1740(79)90033-0 
  31. Liu Y, Wan Z, Yohannes KW, et al. Functional characteristics of Lactobacillus and yeast single starter cultures in the ripening process of dry fermented sausage. Front Microbiol 2021;11:611260. https://doi.org/10.3389/fmicb.2020.611260 
  32. Flores M, Dura MA, Marco A, Toldra F. Effect of Debaryomyces spp. on aroma formation and sensory quality of dry-fermented sausages. Meat Sci 2004;68:439-46. https://doi.org/10.1016/j.meatsci.2003.04.001 
  33. Jeremiah LE. A review of factors influencing consumption, selection and acceptability of meat purchases. J Consum Stud Home Econ 1982;6:137-54. https://doi.org/10.1111/j.1470-6431.1982.tb00593.x 
  34. Miller MF, Carr MA, Ramsey CB, Crockett KL, Hoover LC. Consumer thresholds for establishing the value of beef tenderness. J Anim Sci 2001;79:3062-8. https://doi.org/10.2527/2001.79123062x 
  35. Lee H, Yoon J, Kim M, Oh H, Yoon Y, Jo C. Changes in microbial composition on the crust by different air flow velocities and their effect on sensory properties of dry-aged beef. Meat Sci 2019;153:152-8. https://doi.org/10.1016/j.meatsci.2019.03.019 
  36. Cano-Garcia L, Rivera-Jimenez S, Belloch C, Flores M. Generation of aroma compounds in a fermented sausage meat model system by Debaryomyces hansenii strains. Food Chem 2014;151:364-73. https://doi.org/10.1016/j.foodchem.2013.11.051 
  37. Feidt C, Petit A, Bruas-Reignier F, Brun-Bellut J. Release of free amino-acids during ageing in bovine meat. Meat Sci 1996;44:19-25. https://doi.org/10.1016/s0309-1740(96)00088-5 
  38. Fu Y, Cao S, Li Z. Flavor formation based on lipid in meat and meat products: A review. J Food Biochem 2022;46:e14439. https://doi.org/10.1111/jfbc.14439 
  39. Joo ST, Choi JS, Hur SJ, et al. A comparative study on the taste characteristics of satellite cell cultured meat derived from chicken and cattle muscles. Food Sci Anim Resour 2022;42:175-85. https://doi.org/10.5851/kosfa.2021.e72 
  40. Kim YHB, Kemp R, Samuelsson LM. Effects of dry-aging on meat quality attributes and metabolite profiles of beef loins. Meat Sci 2016;111:168-76. https://doi.org/10.1016/j.meatsci.2015.09.008 
  41. Koutsidis G, Elmore JS, Oruna-Concha MJ, Campo MM, Wood JD, Mottram DS. Water-soluble precursors of beef flavour. Part II: Effect of post-mortem conditioning. Meat Sci 2008;79:270-7. https://doi.org/10.1016/j.meatsci.2007.09.010 
  42. Dura MA, Flores M, Toldra F. Effect of Debaryomyces spp. on the proteolysis of dry-fermented sausages. Meat Sci 2004;68:319-28. https://doi.org/10.1016/j.meatsci.2004.03.015 
  43. Corral S, Salvador A, Belloch C, Flores M. Improvement the aroma of reduced fat and salt fermented sausages by Debaromyces hansenii inoculation. Food Control 2015;47:526-35. https://doi.org/10.1016/j.foodcont.2014.08.001 
  44. Gientka I, Kieliszek M, Jermacz K, Blazejak S. Identification and characterization of oleaginous yeast isolated from kefir and its ability to accumulate intracellular fats in deproteinated potato wastewater with different carbon sources. Biomed Res Int 2017;2017:6061042. https://doi.org/10.1155/2017/6061042 
  45. Breuer U, Harms H. Debaryomyces hansenii-an extremophilic yeast with biotechnological potential. Yeast 2006;23:415-37. https://doi.org/10.1002/yea.1374 
  46. Casaburi A, Piombino P, Nychas GJ, Villani F. Ercolini D. Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol 2015;45:83-102. https://doi.org/10.1016/j.fm.2014.02.002 
  47. Dryden FD, Maechello JA. Influence of total lipid and fatty acid composition upon the palatability of three bovine muscles. J Anim Sci 1970;31:36-41. https://doi.org/10.2527/jas1970.31136x