References
- Andrade MJ, Cordoba JJ, Casado EM, Cordoba MG, Rodriguez M. Effect of selected strains of Debaryomyces hansenii on the volatile compound production of dry fermented sausage "salchichon." Meat Sci 2010;85:256-64. https://doi.org/10.1016/j.meatsci.2010.01.009
- Ozturk I, Sagdic O, Yetim H. Effects of autochthonous yeast cultures on some quality characteristics of traditional turkish fermented sausage "sucuk." Food Sci Anim Resour 2021;41:196-213. https://doi.org/10.5851/kosfa.2020.e89
- Seleshe S, and Kang SN. Effect of different Pediococcus pentosaceus and Lactobacillus plantarum strains on quality characteristics of dry fermented sausage after completion of ripening period. Food Sci Anim Resour 2021;41:636-49. https://doi.org/10.5851/kosfa.2021.e21
- Oh H, Lee HJ, Lee J, Jo C, Yoon Y. Identification of microorganisms associated with the quality improvement of dry-aged beef through microbiome analysis and DNA sequencing, and evaluation of their effects on beef quality. J Food Sci 2019;84:2944-54. https://doi.org/10.1111/1750-3841.14813
- Flores M, Corral S, Cano-Garcia L, Salvador A, Belloch C. Yeast strains as potential aroma enhancers in dry fermented sausages. Int J Food Microbiol 2015;212:16-24. https://doi.org/10.1016/j.ijfoodmicro.2015.02.028
- Aquilanti LS, Santarelli G, Silvestri A, Osimani A, Petruzzelli A, Clementi F. The microbial ecology of a typical Italian salami during its natural fermentation. Int J Food Microbiol 2007;120:136-45. https://doi.org/10.1016/j.ijfoodmicro.2007.06.010
- Bolumar T, Sanz Y, Aristoy MC, Toldra F. Purification and characterization of a prolyl aminopeptidase from Debaryomyces hansenii. Appl Environ Microbiol 2003;69:227-32. https://doi.org/10.1128/aem.69.1.227-232.2003
- Patrignani F, Iucci L, Vallicelli M, Guerzoni ME, Gardini F, Lanciotti R. Role of surface-inoculated Debaryomyces hansenii and Yarrowia lipolytica strains in dried fermented sausage manufacture. Part 1: Evaluation of their effects on microbial evolution, lipolytic and proteolytic patterns. Meat Sci 2007;75:676-86. https://doi.org/10.1016/j.meatsci.2006.09.017
- Kim H, Shin M, Ryu S, et al. Evaluation of probiotic characteristics of newly isolated lactic acid bacteria from dry-aged hanwoo beef. Food Sci Anim Resour 2021;41:468-80. https://doi.org/10.5851/kosfa.2021.e11
- Park S, Kim H. Quality properties of Bulogogi sauce with crust derived from dry-aged beef loin. Food Sci Anim Resour 2021;41:247-60. https://doi.org/10.5851/kosfa.2020.e95
- Hodges JH, Cahill VR, Ockerman HW. Effect of vacuum packaging on weight loss, microbial growth and palatability of fresh beef wholesale cuts. J Food Sci 1974;39:143-6. https://doi.org/10.1111/j.1365-2621.1974.tb01009.x
- Dashdorj D, Tripathi VK, Cho S, Kim Y, Hwang I. Dry aging of beef; Review. J Anim Sci Technol 2016;58:20. https://doi.org/10.1186/s40781-016-0101-9
- Jin S, Yim D. Comparison of effects of two aging methods on the physicochemical traits of pork loin. Food Sci Anim Resour 2020;40:844-51. https://doi.org/10.5851/kosfa.2020.e22
- Flores M, Olivares A. Handbook of fermented meat and poultry. Hoboken, NJ, USA: Wiley; 2007. pp. 217-25.
- Santos NN, Santos-Mendonca RC, Sanz Y, Bolumar T, Aristoy MC, Toldra F. Hydrolysis of pork muscle sarcoplasmic proteins by Debaryomyces hansenii. Int J Food Microbiol 2001;68:199-206. https://doi.org/10.1016/s0168-1605(01)00489-5
- Smith S, Lunt D, Chung K, Choi C, Tume R, Zembayashi M. Adiposity, fatty acid composition, and delta-9 desaturase activity during growth in beef cattle. Anim Sci J 2006;77:478-86. https://doi.org/10.1111/j.1740-0929.2006.00375.x
- Ordonez JA, de la Hoz L. Mediterranean products. Handbook of fermented meat and poultry. Oxford, UK: Blackwell Publishing; 2007. pp. 333-48.
- Cano-Garcia L, Belloch C, Flores M. Impact of Debaryomyces hansenii strains inoculation on the quality of slow dry-cured fermented sausages. Meat Sci 2014;96:1469-77. https://doi.org/10.1016/j.meatsci.2013.12.011
- Ramos-Moreno L, Ruiz-Perez F, Rodriguez-Castro E, Ramos J. Debaryomyces hansenii is a real tool to improve a diversity of characteristics in sausages and dry-meat products. Microorganisms 2021;9:1512. https://doi.org/10.3390/microorganisms9071512
- Perea-Sanz L, Peris D, Belloch C, Flores M. Debaryomyces hansenii metabolism of sulfur amino acids as precursors of volatile sulfur compounds of interest in meat products. J Agric Food Chem 2019;67:9335-43. https://doi.org/10.1021/acs.jafc.9b03361
- Buxton R. Blood agar plates and hemolysis protocols. Am Soc Microbiol 2005;15:1-9.
- Sadeghi-Aliabadi H, Mohammadi F, Fazeli H, Mirlohi M. Effects of Lactobacillus plantarum A7 with probiotic potential on colon cancer and normal cells proliferation in comparison with a commercial strain. Iran J Basic Med Sci 2014;17:815-9.
- Calicioglu M, Sofos JN, Kendall PA. Influence of marinades on survival during storage of acid-adapted and nonadapted Listeria monocytogenes inoculated post-drying on beef jerky. Int J Food Microbiol 2003;86:283-92. https://doi.org/10.1016/S0168-1605(02)00565-2
- Park JA, Joo SY, Hwang HJ, et al. Effects of freezing storage temperature on the storage stability of beef. Korean J Food Sci Technol 2016;48:301-5. https://doi.org/10.9721/KJFST.2016.48.4.301
- Hwang YH, Joo ST. Fatty acid profiles, meat quality, and sensory palatability of grain-fed and grass-fed beef from Hanwoo, American, and Australian crossbred cattle. Food Sci Anim Resour 2017;37:153-61. https://doi.org/10.5851/kosfa.2017.37.2.153
- Kim J, Kim M, Kang C, et al. The Use of MTT assay, in vitro and ex vivo, to predict the adiosensitivity of colorectal cancer. J korean Soc Ther Radiol Oncol 2008;26:166-72. https://doi.org/10.3857/jkstro.2008.26.3.166
- Alvarez S, Mullen AM, Hamill R, O'Neill E, Alvarez C. Dryaging of beef as a tool to improve meat quality. Impact of processing conditions on the technical and organoleptic meat properties. In: Advances in Food and Nutrition Research. Cambridge, MA, USA: Academic Press; 2021. pp. 83-100. https://doi.org/10.1016/bs.afnr.2020.10.001
- Bouton PE, Hariis PT, Shorthose WR. Effect of ultimate pH upon the water-holding capacity and tenderness of mutton. J Food Sci 1971;36:435-9. https://doi.org/10.1111/j.1365-2621.1971.tb06382.x
- Johnson JL, Doyle MP, Cassens RG. Survival of Listeria monocytogenes in ground beef. Int J Food Microbiol 1988;6:243-7. https://doi.org/10.1016/0168-1605(88)90016-5
- Demeyer D, Vandekerckhove P, Moermans R. Compounds determining pH in dry sausage. Meat Sci 1979;3:161-7. https://doi.org/10.1016/0309-1740(79)90033-0
- Liu Y, Wan Z, Yohannes KW, et al. Functional characteristics of Lactobacillus and yeast single starter cultures in the ripening process of dry fermented sausage. Front Microbiol 2021;11:611260. https://doi.org/10.3389/fmicb.2020.611260
- Flores M, Dura MA, Marco A, Toldra F. Effect of Debaryomyces spp. on aroma formation and sensory quality of dry-fermented sausages. Meat Sci 2004;68:439-46. https://doi.org/10.1016/j.meatsci.2003.04.001
- Jeremiah LE. A review of factors influencing consumption, selection and acceptability of meat purchases. J Consum Stud Home Econ 1982;6:137-54. https://doi.org/10.1111/j.1470-6431.1982.tb00593.x
- Miller MF, Carr MA, Ramsey CB, Crockett KL, Hoover LC. Consumer thresholds for establishing the value of beef tenderness. J Anim Sci 2001;79:3062-8. https://doi.org/10.2527/2001.79123062x
- Lee H, Yoon J, Kim M, Oh H, Yoon Y, Jo C. Changes in microbial composition on the crust by different air flow velocities and their effect on sensory properties of dry-aged beef. Meat Sci 2019;153:152-8. https://doi.org/10.1016/j.meatsci.2019.03.019
- Cano-Garcia L, Rivera-Jimenez S, Belloch C, Flores M. Generation of aroma compounds in a fermented sausage meat model system by Debaryomyces hansenii strains. Food Chem 2014;151:364-73. https://doi.org/10.1016/j.foodchem.2013.11.051
- Feidt C, Petit A, Bruas-Reignier F, Brun-Bellut J. Release of free amino-acids during ageing in bovine meat. Meat Sci 1996;44:19-25. https://doi.org/10.1016/s0309-1740(96)00088-5
- Fu Y, Cao S, Li Z. Flavor formation based on lipid in meat and meat products: A review. J Food Biochem 2022;46:e14439. https://doi.org/10.1111/jfbc.14439
- Joo ST, Choi JS, Hur SJ, et al. A comparative study on the taste characteristics of satellite cell cultured meat derived from chicken and cattle muscles. Food Sci Anim Resour 2022;42:175-85. https://doi.org/10.5851/kosfa.2021.e72
- Kim YHB, Kemp R, Samuelsson LM. Effects of dry-aging on meat quality attributes and metabolite profiles of beef loins. Meat Sci 2016;111:168-76. https://doi.org/10.1016/j.meatsci.2015.09.008
- Koutsidis G, Elmore JS, Oruna-Concha MJ, Campo MM, Wood JD, Mottram DS. Water-soluble precursors of beef flavour. Part II: Effect of post-mortem conditioning. Meat Sci 2008;79:270-7. https://doi.org/10.1016/j.meatsci.2007.09.010
- Dura MA, Flores M, Toldra F. Effect of Debaryomyces spp. on the proteolysis of dry-fermented sausages. Meat Sci 2004;68:319-28. https://doi.org/10.1016/j.meatsci.2004.03.015
- Corral S, Salvador A, Belloch C, Flores M. Improvement the aroma of reduced fat and salt fermented sausages by Debaromyces hansenii inoculation. Food Control 2015;47:526-35. https://doi.org/10.1016/j.foodcont.2014.08.001
- Gientka I, Kieliszek M, Jermacz K, Blazejak S. Identification and characterization of oleaginous yeast isolated from kefir and its ability to accumulate intracellular fats in deproteinated potato wastewater with different carbon sources. Biomed Res Int 2017;2017:6061042. https://doi.org/10.1155/2017/6061042
- Breuer U, Harms H. Debaryomyces hansenii-an extremophilic yeast with biotechnological potential. Yeast 2006;23:415-37. https://doi.org/10.1002/yea.1374
- Casaburi A, Piombino P, Nychas GJ, Villani F. Ercolini D. Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol 2015;45:83-102. https://doi.org/10.1016/j.fm.2014.02.002
- Dryden FD, Maechello JA. Influence of total lipid and fatty acid composition upon the palatability of three bovine muscles. J Anim Sci 1970;31:36-41. https://doi.org/10.2527/jas1970.31136x