DOI QR코드

DOI QR Code

Cricket (Gryllus bimaculatus) meal pellets as a protein supplement to improve feed efficiency, ruminal fermentation and microbial protein synthesis in Thai native beef cattle

  • Burarat Phesatcha (Department of Applied Biology, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan) ;
  • Kampanat Phesatcha (Department of Animal Science, Faculty of Agriculture and Technology, Nakhon Phanom University) ;
  • Maharach Matra (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University) ;
  • Metha Wanapat (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University)
  • Received : 2023.03.21
  • Accepted : 2023.05.17
  • Published : 2023.09.01

Abstract

Objective: Replacing soybean meal (SBM) with cricket (Gryllus bimaculatus) meal pellets (CMP) in concentrate diets was investigated for feed efficiency, ruminal fermentation and microbial protein synthesis in Thai native beef cattle. Methods: Four male beef cattle were randomly assigned to treatments using a 4×4 Latin square design with four levels of SBM replaced by CMP at 0%, 33%, 67%, and 100% in concentrate diets. Results: Results revealed that replacement of SBM with CMP did not affect dry matter (DM) consumption, while digestibilities of crude protein, acid detergent fiber and neutral detergent fiber were significantly enhanced (p<0.05) but did not alter digestibility of DM and organic matter. Increasing levels of CMP up to 100% in concentrate diets increased ruminal ammoniacal nitrogen (NH3-N) concentrations, blood urea nitrogen, total volatile fatty acids and propionate concentration (p<0.05), whereas production of methane and protozoal populations decreased (p<0.05). Efficiency of microbial nitrogen protein synthesis increased when SBM was replaced with CMP. Conclusion: Substitution of SBM with CMP in the feed concentrate mixture at up to 100% resulted in enhanced nutrient digestibility and rumen fermentation efficiency, with increased volatile fatty acids production, especially propionate and microbial protein synthesis, while decreasing protozoal populations and mitigating rumen methane production in Thai native beef cattle fed a rice straw-based diet.

Keywords

Acknowledgement

We also express our appreciation to the Tropical Feed Resources Research and Development Centre (TROFREC), Khon Kaen University (KKU), Department of Applied Biology, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima, Department of Animal Science, Faculty of Agriculture and Technology, Nakhon Phanom University, Thailand.

References

  1. Opio C, Gerber P, Mottet A, et al. Greenhouse gas emissions from ruminant supply chains-a global life cycle assessment. Rome, Italy: Food and Agriculture Organization of the United Nations; 2013. 106 p.
  2. Jolazadeh A, Dehghan-Banadaky M, Rezayazdi K. Effects of soybean meal treated with tannins extracted from pistachio hulls on performance, ruminal fermentation, blood metabolites and nutrient digestion of Holstein bulls. Anim Feed Sci Technol 2015;203:33-40. https://doi.org/10.1016/j.anifeedsci.2015.02.005
  3. van Huis A, Van Itterbeeck, J. Klunder, et al. Edible insects. Future prospects for food and feed security. Rome, Italy: Food and Agriculture Organization of the United Nations; 2013,171, p.187.
  4. Jayanegara A, Novandri B, Yantina N, Ridla, M. Use of black soldier fly larvae (Hermetia illucens) to substitute soybean meal in ruminant diet: An in vitro rumen fermentation study. Vet World 2017;10:1436-16. https://doi.org/10.14202/vetworld.2017.1439-1446
  5. Beyzi BS. Effect of replacement of sunflower seed meal with isonitrogenous Polistes instabilis on in vitro methanogenesis and rumen fermentation. J Insects Food Feed 2020;5:489-98. https://doi.org/10.3920/JIFF2020.0044
  6. DiGiacomo K, Leury B. Review: Insect meal: A future source of protein feed for pigs? Animals 2019;13:3022-30. https://doi.org/10.1017/S1751731119001873
  7. Jayanegara A, Yantina N, Novandri B, Laconi EB. Evaluation of some insects as potential feed ingredients for ruminants: Chemical composition, in vitro rumen fermentation and methane emissions. J Indones Trop Anim Agric 2017;42:247-54. https://doi.org/10.14710/jitaa.42.4.247-254
  8. Phesatcha B, Phesatcha K, Viennaxay B, Matra M, Totakul P, Wanapat M. Cricket meal (Gryllus bimaculatus) as a protein supplement on in vitro fermentation characteristics and methane mitigation. Insects 2022;13:129. https://doi.org/10.3390/insects13020129
  9. Spranghers T, Ottoboni M, Klootwijk C, et al. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J Sci Food Agric 2017;97:2594-600. https://doi.org/10.1002/jsfa.8081
  10. Wang D, Zhai SW, Zhang CX, et al. Evaluation on nutritional value of field crickets as a poultry feedstuff. Asian-Australas J Anim Sci 2005;18:667-70. https://doi.org/10.5713/ajas.2005.667
  11. Chaudhari SS, Arakane Y, Specht CA, et al. Knickkopf protein protects and organizes chitin in the newly synthesized insect exoskeleton. Proc Natl Acad Sci USA 2011;108:17028-33. https://doi.org/10.1073/pnas.1112288108
  12. Chung YC, Su YP, Chen CC, et al. Relationship between antibacterial activity of chitosans and surface characteristics of cell wall. Acta Pharmacol Sin 2004;25:932-6
  13. Biasato I, Renna M, Gai F, et al. Partially defatted black soldier fly larva meal inclusion in piglet diets: Effects on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features. J Anim Sci Biotechnol 2019;10:12. https://doi.org/10.1186/s40104-019-0325-x
  14. Onsongo VO, Osuga IM, Gachuiri CK, et al. Insects for income generation through animal feed: effect of dietary replacement of soybean and fish meal with black soldier fly meal on broiler growth and economic performance. J Econ Entomol 2018;111:1966-73. https://doi.org/10.1093/jee/toy118
  15. Iaconisi V, Marono S, Parisi G, et al. Dietary inclusion of Tenebrio molitor larvae meal: effects on growth performance and final quality traits of blackspot sea bream (Pagellus bogaraveo). Aquaculture 2017;476:49-58. https://doi.org/10.1016/j.aquaculture.2017.04.007
  16. Ahmed S, Al Baki MA, Lee J, Seo DY, Lee D, Kim Y. The first report of prostacyclin and its physiological roles in insects. Gen Comp Endocrinol 2021;301:113659. https://doi.org/10.1016/j.ygcen.2020.113659
  17. Permatahati D, Mutia R, Astuti DA. Effect of cricket meal (Gryllus bimaculatus) on production and physical quality of japanese quail egg. Trop Anim Sci J 2019;42:53-8. https://doi.org/10.5398/tasj.2019.42.1.53
  18. Astuti DA, Anggraeny A, Khotijah L, Suharti S, Jayanegara A. Performance, physiological status, and rumen fermentation profiles of pre and post weaning goat kids fed cricket meal as a protein source. Trop Anim Sci J 2019;42:145-51. https://doi.org/10.5398/tasj.2019.42.2.145
  19. AOAC. Official methods of analysis. 19th ed. Arlington, VA, USA: Association of Official Analytical Chemists; 2012.
  20. Van Keulen JY, Young BA. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J Anim Sci 1997;44:282-7. https://doi.org/10.2527/jas1977.442282x
  21. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74:3583-97. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  22. Chen XB, Gomes MJ. Estimation of Microbial protein supply to sheep and cattle based on urinary excretion of purine derivative-an overview of the technique details. Occasional Publication 1992. Aberdeen, UK: International Feed Resources Unit, Rowett Research Institute; 1995.
  23. Galyen M. Laboratory procedure in animal nutrition research. Las Cruces, NM, USA; Department of Animal and Range Science, New Mexico State University; 1989.
  24. Moss AR, Jouany JP, Newbold J. Methane production by ruminants: its contribution to global warming. Ann Zootech 2000;49:231-53. https://doi.org/10.1051/animres:2000119
  25. Crocker CL. Rapid determination of urea nitrogen in serum or plasma without deproteinization. Am J Med Technol 1967;33:361-5.
  26. Galo E, Emanuele SM, Sniffen CJ, White JH, Knapp JR. Effects of a polymer-coated urea product on nitrogen metabolism in lactating Holstein dairy cattle. J Dairy Sci 2003;86:2154-62. https://doi:10.3168/jds.S0022-0302(03)73805-3
  27. SAS (Statistical Analysis System), user's guide: Statistic, Version 9.3th Edition. Cary, NC, USA: SAS Inst. Inc.; 2013.
  28. Taufek NM, Muin H, Raji AA, Razak SA, Yusof HM, Alias Z. Apparent digestibility coefficients and amino acid availability of cricket meal, Gryllus bimaculatus, and fishmeal in African catfish, Clarias gariepinus, diet. J World Aquac Soc 2016;47:798-805. https://doi.org/10.1111/jwas.12302
  29. Zielinska E, Baraniak B, Karas M, Rybczynska K, Jakubczyk A. Selected species of edible insects as a source of nutrient composition. Food Res Int 2015;77:460-6. https://doi.org/10.1016/j.foodres.2015.09.008
  30. Van Huis A. Potential of insects as food and feed in assuring food security. Annu Rev Entomol 2013;58:563-83. https://doi.org/10.1146/annurev-ento-120811-153704
  31. Astuti DA, Komalasari K. Feed and animal nutrition: Insect as animal feed. IOP Conf Ser Earth Environ Sci 2020;465:12002. https://doi.org/10.1088/1755-1315/465/1/012002
  32. Phesatcha B, Phesatcha K, Wanapat M. Mitragyna speciosa korth leaf pellet supplementation on feed intake, nutrient digestibility, rumen fermentation, microbial protein synthesis and protozoal population in Thai native beef cattle. Animals 2022;12:3238. https://doi.org/10.3390/ani12233238
  33. Gasco L, Biancarosa I, Liland NS. From waste to feed: a review of recent knowledge on insects as producers of protein and fat for animal feeds. Curr Opin Green Sustain Chem 2020;23:67-79. https://doi.org/10.1016/j.cogsc.2020.03.003
  34. Fukuda EP, Cox JR, Wickersham TA, Drewery ML. Evaluation of black soldier fly larvae (Hermetia illucens) as a protein supplement for beef steers consuming low-quality forage. Transl Anim Sci 2022;6:txac018. https://doi.org/10.1093/tas/txac018
  35. Owens FN, Qi S, Sapienza DA. Applied protein nutrition of ruminants - current status and future directions. Prof Anim Sci 2014;30:150-79. https://doi.org/10.15232/S1080-7446(15)30102-9
  36. Pengpeng W, Tan Z. Ammonia assimilation in rumen bacteria: a review. Anim Biotechnol 2013;24:107-28. https://doi.org/10.1080/10495398.2012.756402
  37. Jayanegara A, Dewi SP, Laylli N, Laconi EB, Nahrowi N, Ridla M. Determination of cell wall protein from selected feedstuffs and its relationship with ruminal protein digestibility in vitro. Media Peternakan 2016;39:134-40. https://doi.org/10.5398/medpet.2016.39.2.134
  38. Hristov A, Ropp J. Effect of dietary carbohydrate composition and availability on utilization of ruminal ammonia nitrogen for milk protein synthesis in dairy cows. J Dairy Sci 2003;86:2416-27. https://doi.org/10.3168/jds.S0022-0302(03)73836-3
  39. Schauff DJ, Elliott JP, Clark JH, Drackley JK. Effects of feeding lactating dairy cows diets containing whole soybeans and tallow. J Dairy Sci 1992;75:1923-35. https://doi.org/10.3168/jds.S0022-0302(92)77952-1
  40. Hristov AN, Pol MV, Agle M, et al. Effect of lauric acid and coconut oil on ruminal fermentation, digestion, ammonia losses from manure, and milk fatty acid composition in lactating cows. J Dairy Sci 2009;92:5561-82. https://doi.org/10.3168/jds.2009-2383
  41. Machmuller A. Medium-chain fatty acids and their potential to reduce methanogenesis in domestic ruminants. Agric Ecosyst Environ 2006;112:107-14. https://doi.org/10.1016/j.agee.2005.08.010
  42. Russell JB, Muck RE, Weimer PJ. Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiol Ecol 2009;67:183-97. https://doi.org/10.1111/j.1574-6941.2008.00633.x
  43. Goiri I, Garcia A, Oregui LM. Effect of chitosans on in vitro rumen digestion and fermentation of maize silage. Anim Feed SciTechnol 2009;148:276-87. https://doi.org/10.1016/j.anifeedsci.2008.04.007
  44. Belanche A, Pinloche E, Preskett D, Newbold CJ. Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique. FEMS Microbiol Ecol 2016;92: fiv160. https://doi.org/10.1093/femsec/fiv160
  45. Cutrignelli MI, Piccolo G, D'Urso S, et al. Urinary excretion of purine derivatives in dry buffalo and Fresian cows. Ital J Anim Sci 2007;6:563-6. https://doi.org/10.4081/ijas.2007.s2.563
  46. Firkins JL, Yu Z, Morrison M. Ruminal nitrogen metabolism: Perspectives for integration of microbiology and nutrition for dairy. J Dairy Sci 2007;90:E1-16. https://doi.org/10.3168/jds.2006-518
  47. Phesatcha B, Phesatcha K, Viennasay B, Thao NT, Wanapat M. Feed intake and nutrient digestibility, rumen fermentation profiles, milk yield and compositions of lactating dairy cows supplemented by Flemingia macrophylla pellet. Trop Anim Sci J 2021;44:288-96. https://doi.org/10.5398/tasj.2021.44.3.288
  48. Phesatcha K, Phesatcha B, Wanapat M. Mangosteen peel liquid-protected soybean meal can shift rumen microbiome and rumen fermentation end-products in lactating crossbred Holstein friesian cows. Front Vet Sci 2022;8:772043. https://doi.org/10.3389/fvets.2021.772043