DOI QR코드

DOI QR Code

Potential of combining natural-derived antioxidants for improving broiler meat shelf-life - A review

  • Andiswa Ntonhle Sithole (Animal and Poultry Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal) ;
  • Vuyisa Andries Hlatini (Agricultural Research Council-Animal Production (Nutrition Building)) ;
  • Michael Chimonyo (Faculty of Science, Engineering and Agriculture, University of Venda Private Bag)
  • Received : 2022.05.10
  • Accepted : 2022.08.10
  • Published : 2023.09.01

Abstract

Synthetic antioxidants have shown adverse effects on consumers. The review, thus, aims to assess the effect of marinating broiler meat with plant leaves-derived antioxidants potential for improving shelf-life and human health. Broiler meat loss and waste due to spoilage is more than three million kg annually, thus, extending shelf-life by reducing initial microbial load and autoxidation is essential. Adding various antioxidants would reduce oxidation of protein and fatty acids improving nutritional shelf-life through synergic interactions. Antioxidant synergetic effects also improves reduction in microbiota proliferation leading to the delayed development of off flavours and deterioration of meat colour. To reduce initial microbial load and autoxidation effects, the inclusion of polyphenols and antioxidants from varying sources by mixing various antioxidants would lead to improved synergic effects.

Keywords

Acknowledgement

The authors would like to thank National Research Foundation and University of KwaZulu-Natal.

References

  1. Vanhonacker F, Verbeke W. Buying higher welfare poultry products? Profiling flemish consumers who do and do not. Poult Sci J 2009;88:2702-11. https://doi.org/10.3382/ps.2009-00259
  2. SAPA. SAPA South african poultry association code of conduct june 2018. South African Poultry Association; 2018. 56. [Cited 2022 May 30]. Available from: http://www.sapoultry.co.za/pdf-docs/code-practice-broilers.pdf
  3. Simopoulos A. Human requirement for n-3 polyunsaturated fatty acids. Poult Sci J 2000;79:961-70. https://doi.org/10.1093/ps/79.7.961
  4. Xing H, Luan S, Sun Y, Sa R, Zhang H. Effects of ammonia exposure on carcass traits and fatty acid composition of broiler meat. Anim Nutr 2016;2:282-7. https://doi.org/10.1016/j.aninu.2016.07.006
  5. Yehye WA, Rahman NA, Ariffin A, et al. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (bht): a review. Eur J Med Chem 2015;101:295-312. https://doi.org/10.1016/j.ejmech.2015.06.026
  6. Caleja C, Ribeiro A, Filomena Barreiro M, Ferreira ICFR. Phenolic compounds as nutraceuticals or functional food ingredients. Curr Pharm Des 2017;23:2787-806. https://doi.org/10.2174/1381612822666161227153906
  7. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci 2016;5,e47. https://doi.org/10.1017/jns.2016.41
  8. Manessis G, Kalogianni AI, Lazou T, Moschovas M, Bossis I, Gelasakis AI. Plant-derived natural antioxidants in meat and meat products. Antioxidants 2020;9:1215. https://doi.org/10.3390/antiox9121215
  9. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999;12:564-82. https://doi.org/10.1128/CMR.12.4.564
  10. Ahmed B, Ameen F, Rizvi A, et al. Destruction of cell topography, morphology, membrane, inhibition of respiration, biofilm formation, and bioactive molecule production by nanoparticles of Ag, ZnO, CuO, TiO2, and Al2O3 toward beneficial soil bacteria. ACS Omega 2020;5:7861-76. https://doi.org/10.1021/acsomega.9b04084
  11. Iranshahi M, Rezaee R, Parhiz H, Roohbakhsh A, Soltani F. Protective effects of flavonoids against microbes and toxins: The cases of hesperidin and hesperetin. Life Sci 2015;137:125-32. https://doi.org/10.1016/j.lfs.2015.07.014
  12. Dufour M, Simmonds RS, Bremer PJ. Development of a method to quantify in vitro the synergistic activity of "natural" antimicrobials. Int J Food Microbiol 2003;85:249-58. https://doi.org/10.1016/S0168-1605(02)00544-5
  13. Nambapana MN, Wickramasuriya SS, Macelline SP, Samarasinghe K, Vidanarachchi JK. Algae-based antioxidant containing selenium yeast (economase®) enhanced the growth performance, oxidative stability, and meat quality of broiler chickens. Anim Biosci 2022;35:567-76. https://doi.org/10.5713/ab.20.0822
  14. Wang G, Wang H, Han Y, et al. Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ. Food Microbiol 2017;63:139-46. https://doi.org/10.1016/j.fm.2016.11.015
  15. Pateiro M, Munekata PE, Sant'Ana AS, Dominguez R, Rodriguez-Lazaro D, Lorenzo JM. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. Int J Food Microbiol 2021;337:108966. https://doi.org/10.1016/j.ijfoodmicro.2020.108966
  16. Adineh H, Naderi M, Hamidi MK, Harsij M. Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density. Fish Shellfish Immunol 2019;95:440-8. https://doi.org/10.1016/j.fsi.2019.10.057
  17. Li W, Wei F, Xu B, et al. Effect of stocking density and alpha-lipoic acid on the growth performance, physiological and oxidative stress and immune response of broilers. Asian-Australas J Anim Sci 2019;32:1914-22. https://doi.org/10.5713/ajas.18.0939
  18. Hoffman LC, Jones M, Muller N, Joubert E, Sadie A. Lipid and protein stability and sensory evaluation of ostrich (Struthio camelus) droewors with the addition of rooibos tea extract (Aspalathus linearis) as a natural antioxidant. Meat Sci 2014;96:1289-96. https://doi.org/10.1016/j.meatsci.2013.10.036
  19. Wang YZ, Fu SG, Wang SY, Yang DJ, Wu YHS, Chen YC. Effects of a natural antioxidant, polyphenol-rich rosemary (Rosmarinus officinalis l.) extract, on lipid stability of plant-derived omega-3 fatty-acid rich oil. LWT-Food Sci Technol 2018;89:210-6. https://doi.org/10.1016/j.lwt.2017.10.055
  20. Viana F, Canto A, Costa-Lima B, Salim A, Junior CC. Color stability and lipid oxidation of broiler breast meat from animals raised on organic versus non-organic production systems. Poult Sci 2017;96:747-53. https://doi.org/10.3382/ps/pew331
  21. Lipinski B. Why does animal-based food loss and waste matter? Anim Front 2020;10:48-52. https://doi.org/10.1093/af/vfaa039
  22. Flanagan K, Robertson K, Hanson C. Reducing food loss and waste: Setting a global action agenda. World Resources Institute 2019 [cited 2022 May 30]. Available from: https://apo.org.au/sites/default/files/resource-files/2019-08/apo-nid256366.pdf
  23. MacLachlan I. Marketing meat: From branch house to postmoderzn retailing. Univ Toronto Press; 2001. pp. 291-325. https://doi.org/10.3138/9781442676503-013
  24. Speranza B, Liso A, Russo V, Corbo MR. Evaluation of the potential of biofilm formation of bifidobacterium longum subsp. Infantis and lactobacillus reuteri as competitive biocontrol agents against pathogenic and food spoilage bacteria. Microorganisms 2020;8:177. https://doi.org/10.3390/microorganisms8020177
  25. Singh R. Economic impact of meat spoilage and preservation. 2020 [Cited 2022 May 30]. Available from: https://www.pashudhanpraharee.com/economic-impact-of-meat-spoilage-and-preservation/#:~:text=Lipid%20oxidation%2C%20protein%20degradation%20and,%2C%20juiciness%2C%20odour%20and%20texture
  26. Zhang Z, Yang L, Hou J, Tian S, Liu Y. Molecular mechanisms underlying the anticancer activities of licorice flavonoids. J Ethnopharmacol 2021;267:113635. https://doi.org/10.1016/j.jep.2020.113635
  27. Murali N, Kumar-Phillips G, Rath N, Marcy J, Slavik M. Effect of marinating chicken meat with lemon, green tea and turmeric against foodborne bacterial pathogens. Int J Poult Sci 2012;11:326-32. https://doi.org/10.3923/ijps.2012.326.332
  28. Kamel SM, Thabet HA, Algadi EA. Influence of drying process on the functional properties of some plants. Chem Mater Res 2013;3:1-8.
  29. Karlund A, Moor U, Sandell M, Karjalainen RO. The impact of harvesting, storage and processing factors on health-promoting phytochemicals in berries and fruits. Process 2014;2:596-624. https://doi.org/10.3390/pr2030596
  30. EFSA Panel on Biological Hazards. Growth of spoilage bacteria during storage and transport of meat. EFSA (BioHAZ) J 2016;14:e04523. https://doi.org/10.2903/j.efsa.2016.4523
  31. Gram L, Ravn L, Rasch M, Bruhn JB, Christensen AB, Givskov M. Food spoilage-interactions between food spoilage bacteria. Int J Food Microbiol 2002;78:79-97. https://doi.org/10.1016/S0168-1605(02)00233-7
  32. Doulgeraki AI, Ercolini D, Villani F, Nychas GJE. Spoilage microbiota associated to the storage of raw meat in different conditions. Int J Food Microbiol 2012;157:130-41. https://doi.org/10.1016/j.ijfoodmicro.2012.05.020
  33. Boskovic M, Zdravkovic N, Ivanovic J, et al. Antimicrobial activity of thyme (Tymus vulgaris) and oregano (Origanum vulgare) essential oils against some food-borne microorganisms. Procedia Food Sci 2015;5:18-21. https://doi.org/10.1016/j.profoo.2015.09.005
  34. Khaled H, Aziziah A, Marii A. Effect of oregano extract on shelf-life, microbiological quality of chilled chicken carcasses. Int Food Res J 2016;23:1296-9.
  35. Ri CS, Jiang XR, Kim MH, et al. Effects of dietary oregano powder supplementation on the growth performance, antioxidant status and meat quality of broiler chicks. Ital J Anim Sci 2017;16:246-52. https://doi.org/10.1080/1828051X.2016.1274243
  36. Krishnan RK, Babuskin S, Babu PAS, Sasikala M, et al. Antimicrobial and antioxidant effects of spice extracts on the shelf life extension of raw chicken meat. Int J Food Microbiol 2014;171:32-40. https://doi.org/10.1016/j.ijfoodmicro.2013.11.011
  37. Gill CO, Harris LM. Limiting conditions of temperature and ph for growth of "thermophilic" campylobacters on solid media. J Food Prot 1983;46:767-9. https://doi.org/10.4315/0362-028X-46.9.767
  38. Karabagias I, Badeka A, Kontominas MG. Shelf life extension of lamb meat using thyme or oregano essential oils and modified atmosphere packaging. Meat Sci 2011;88:109-16. https://doi.org/10.1016/j.meatsci.2010.12.010
  39. Lee HS, Kwon M, Heo S, Kim MG, Kim GB. Characterization of the biodiversity of the spoilage microbiota in chicken meat using next generation sequencing and culture dependent approach. Korean J Food Sci Anim Resour 2017;37:535-41. https://doi.org/10.5851/kosfa.2017.37.4.535
  40. Ulbin-Figlewicz N, Jarmoluk A, Marycz K. Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota. Ann Microbiol 2015;65:1537-46. https://doi.org/10.1007/s13213-014-0992-y
  41. Shan B, Cai YZ, Brooks JD, Corke H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int J Food Microbiol 2007;117:112-9. https://doi.org/10.1016/j.ijfoodmicro.2007.03.003
  42. Chang EH, Huang J, Lin Z, Brown AC. Catechin-mediated restructuring of a bacterial toxin inhibits activity. Biochim Biophys Acta Gen Subj 2019;1863:191-8. https://doi.org/10.1016/j.bbagen.2018.10.011
  43. Rodriguez Vaquero MJ, Aredes Fernandez PA, Manca de Nadra MC, Strasser de Saad AM. Phenolic compound combinations on escherichia coli viability in a meat system. J Agric Food Chem 2010;58:6048-52. https://doi.org/10.1021/jf903966p
  44. Pacheco-Ordaz R, Wall-Medrano A, Goni MG, Ramos-Clamont-Montfort G, Ayala-Zavala JF, Gonzalez-Aguilar GA. Effect of phenolic compounds on the growth of selected probiotic and pathogenic bacteria. Lett Appl Microbiol 2018;66:25-31. https://doi.org/10.1111/lam.12814
  45. Zhang H, Wu J, Guo X. Effects of antimicrobial and antioxidant activities of spice extracts on raw chicken meat quality. Food Sci Hum Wellness 2016;5:39-48. https://doi.org/10.1016/j.fshw.2015.11.003
  46. Prigent SV, Voragen AG, Visser AJ, van Koningsveld GA, Gruppen H. Covalent interactions between proteins and oxidation products of caffeoylquinic acid (chlorogenic acid). J Sci Food Agric 2007;87:2502-10. https://doi.org/10.1002/jsfa.3011
  47. Huff-Lonergan E, Lonergan SM. Mechanisms of water-holding capacity of meat: the role of postmortem biochemical and structural changes. Meat Sci 2005;71:194-204. https://doi.org/10.1016/j.meatsci.2005.04.022
  48. Hayeck N, Mussa I, Perrier S, George C. Production of peroxy radicals from the photochemical reaction of fatty acids at the air-water interface. ACS Earth Space Chem 2020;4:1247-53. https://doi.org/10.1021/acsearthspacechem.0c00048
  49. Palheta IC, Borges RS. Sesamol is a related antioxidant to the vitamin e. Chem Data Collect 2017;11:77-83. https://doi.org/10.1016/j.cdc.2017.08.004
  50. Wang B, Zhang Q, Zhang N, et al. Insights into formation, detection and removal of the beany flavor in soybean protein. Trends Food Sci Technol 2021;112:336-47. https://doi.org/10.1016/j.tifs.2021.04.018
  51. Hibbeln JR, Nieminen LR, Blasbalg TL, Riggs JA, Lands WE. Healthy intakes of n-3 and n-6 fatty acids: Estimations considering worldwide diversity. Am J Clin Nutr 2006;83:1483S-93S. https://doi.org/10.1093/ajcn/83.6.1483S
  52. Sheppard KW, Cheatham CL. Omega-6/omega-3 fatty acid intake of children and older adults in the us: Dietary intake in comparison to current dietary recommendations and the healthy eating index. Lipids Health Dis 2018;17:43. https://doi.org/10.1186/s12944-018-0693-9
  53. Simopoulos AP. Summary of the nato advanced research workshop on dietary ω3 and ω6 fatty acids: Biological effects and nutritional essentiality. J Nutr 1989;119:521-8. https://doi.org/10.1093/jn/119.4.521
  54. Trumbo P, Schlicker S, Yates AA, Poos M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). J Am Diet Assoc 2002;102:1621-30. https://doi.org/10.1016/s0002-8223(02)90346-9
  55. Descalzo AM, Insani E, Biolatto A, et al. Influence of pasture or grain-based diets supplemented with Vitamin E on antioxidant/oxidative balance of argentine beef. Meat Sci 2005;70:35-44. https://doi.org/10.1016/j.meatsci.2004.11.018
  56. Gatellier P, Hamelin C, Durand Y, Renerre M. Effect of a dietary vitamin e supplementation on colour stability and lipid oxidation of air- and modified atmosphere-packaged beef. Meat Sci 2001;59:133-40. https://doi.org/10.1016/S0309-1740(01)00063-8