DOI QR코드

DOI QR Code

Optimization of a numerical wave flume for efficient simulations

  • V. Kumaran (Central Water &Power Research Station, (CWPRS)) ;
  • A.V. Mahalingaiah (Central Water &Power Research Station, (CWPRS)) ;
  • Manu Manu (Department of Water Resources and Ocean Engineering, National Institute of Technology) ;
  • Subba Rao (Department of Water Resources and Ocean Engineering, National Institute of Technology)
  • Received : 2023.05.21
  • Accepted : 2023.08.22
  • Published : 2023.12.25

Abstract

The present work investigates the wave generation and propagation in a 2-D wave flume to assess the effect of wave reflection for varying beach slopes by using a numerical tool based on computational fluid dynamics. At first, a numerical wave flume (NWF) is created with different mesh sizes to select the optimum mesh size for time efficient simulation. In addition, different beach slope conditions are introduced such as 1:3, 1:5 and numerical beach at the far end of the NWF to optimize the wave reflection solutions. In addition, several parameters are analysed in order to optimize the solutions. The developed numerical model and its key findings are compared with analytical and experimental surface elevation results and it reveals a good correlation. Finally, the recommended numerical solutions are validated with the experimental findings.

Keywords

Acknowledgement

The authors are thankful to the Dr. R.S. Kankara, Director, CWPRS for providing direction to this work. The authors express gratitude to Central Research Facility, NITK, for providing access to ANSYS software.

References

  1. ANSYS-Inc. (2020), ANSYS FLUENT, Release 20.1.
  2. Binumol, S., Rao, D. and Hegde, A.V. (2017), "Hydrodynamic performance characteristics of an emerged perforated quarter circle breakwater", Int. J. Innov. Res. Sci. Eng. Technol., 6(4), 45-48.
  3. Chakrabarti, S.K. (1994), Offshore Structure Modelling, World Scientific, Singapore.
  4. Chang, J.Y., Lin, Y.T. and Tsai, C.C. (2018), "Viscous numerical wave tank for Bragg resonance by cnoidal and Stokes waves", Eng. Appl. Comput. Fluid Mech., 12(1), 308-323. https://doi.org/10.1080/19942060.2018.1432507.
  5. Cointe, R. and Geyer, P. (1991), Nonlinear and linear motions of a rectangular barge in a perfect fluid.
  6. Dean, R.G. and Dalrymple, R.A. (1984), Water Wave Mechanics for Engineers and Scientists, Prentice-Hall, Englewood Cliffs, New Jersey.
  7. Elangovan, M. (2011), "Simulation of irregular waves by CFD", Int. J. Mech. Aerosp. Ind. Mechatr. Manuf. Eng., 5(7), 1379-1383.
  8. Finnegan, W. and Goggins, J. (2012), "Numerical simulation of linear water waves and wave structure interaction", Ocean Eng., 43, 23-31. https://doi.org/10.1016/j.oceaneng.2012.01.002.
  9. Galvin, C.J.J. (1964), Wave-height prediction for wave generators in shallow water. Tech. Memo. 4 (US Army Coastal Engineering Research Center).
  10. Goda, Y. and Suzuki, Y. (1976), "Estimation of incident and reflected waves in random wave experiments", Proceedings of the 15th Coastal Engineering Conference, Honolulu, Hawaii.
  11. Hajivalie, F., Yeganeh Bakhtiary, A. and Javan, A.H. (2007), "Numerical study of vertical breakwater influence on the breaking wave", Proceedings of the International Conference on Violent Flows, Organized by RIAM, Kyushu University, Fukuoka, Japan.
  12. Havn, J. (2011), "Wave loads on underwater protection covers", Master's thesis, Dept of Marine Technology, NTNU.
  13. Hu, Z.Z., Greaves, D. and Raby, A. (2016), "Numerical wave tank study of extreme waves and wave-structure interaction using Open Foam", Ocean Eng., 126, 329-342. https://doi.org/10.1016/j.oceaneng.2016.09.017.
  14. Issacson, M. (1991), "Measurement of regular wave reflection", J. Waterw. Port C. - ASCE, 117(6), 553-569. https://doi.org/10.1061/(ASCE)0733-950X(1991)117:6(553).
  15. Kandula, J., Usha Sri, P., Ravinder Reddy, P. and Gugulothu, S.K. (2022), "Numerical and experimental evaluation of near-wake cavitation flow around axisymmetric cavitators", Ships Offshore Struct., 17(5), 1042-1052. https://doi.org/10.1080/17445302.2021.1893458.
  16. Kariem, A.S.I. (2016), "Proposing and investigating the efficiency of vertical perforated breakwater", Int. J. Sci. Eng. Res., 7(3),
  17. Krishna, P., Roopsekhar, M., Sundar, V., Sundaravadivelu, R. and Graw, K.U. (2000), "Hydrodynamic pressures on submerged semicircular breakwaters", Proceedings of the International Conference on Coasts, Ports and Marine structures, Iran, Bandar Abbas, 21-24, November.
  18. Kumaran, V., Neelamani, S., Vijay, K.G., Al-Anjari, N. and Al-Ragum, A. (2022), "Wave attenuation by multiple slotted barriers with a zig-zag arrangement -A physical and numerical approach", J. Hydro-Environ. Res., 41, 25-37. https://doi.org/10.1016/j.jher.2022.02.001.
  19. Lal, A. and Elangovan, M. (2008), "CFD simulation and validation of flap type wave-maker", Int. J. Math. Comput. Phys. Electr. Comp. Eng., 2(10), 708-714.
  20. Le Mehaute, B., Divoky, D. and Lin, A. (1968), "Shallow water waves a comparison of theories and experiments", Coast. Eng., 86-107. https://doi.org/10.1061/9780872620131.007.
  21. Liang, X.F., Yang, J.M., Li, J., Xiao, L.F. and Li, X. (2010), "Numerical simulation of irregular wave-simulating irregular wave train", J. Hydrodyn. Ser. B., 22(4), 537-545. https://doi.org/10.1016/S1001-6058(09)60086-X.
  22. Machado, F.M.M., Lopes, A.M.G. and Ferreira, A.D. (2018), "Numerical simulation of regular waves: Optimization of a numerical wave tank", Ocean Eng., 170, 89-99. https://doi.org/10.1016/j.oceaneng.2018.10.002.
  23. Maguire, A.E. (2011), Hydrodynamics, Control and Numerical Modelling of Absorbi Wavemakers. The University of Edinburgh.
  24. Mansard, E.P.D. and Funke, E.R. (1987), On the reflection analysis of irregular waves. Technical Report TRHY-017, NRCC, No. 27522. National Research Council of Canada, Canada.
  25. Manu, V.K. and Rao, S. and Reddy, I.S. (2021), "Hydrodynamic performances of a wall type breakwater - a physical and numerical approach", J. Naval Architect. Marine Eng., 18(2), 141-154. https://doi.org/10.3329/jname.v18i2.52134
  26. Nizamani, M., Nizamani, Z., Nakayama, A. and Osman, M. (2021), "Analysis of loads caused by waves on the deck near the free surface of the offshore platform using CFD", Ships Offshore Struct., 17(9), 1964-1974. https://doi.org/10.1080/17445302.2021.1954329.
  27. Silva, M.C., Vitola, M. de A., Pinto, W.T. and Levi, C.A. (2010), "Numerical simulation of monochromatic wave generated in laboratory: Validation of a CFD code", Proceedings of the Atas do 23° Congresso Nacional de Transporte Brasil.
  28. Wang, W., Kamath, A., Martin, T., Pakozdi, C. and Bihs, H. (2020), "A comparison of different wave modelling techniques in an open-source hydrodynamic framework", J. Mar. Sci. Eng., 8(7), 526. https://doi.org/10.3390/jmse8070526.
  29. Yuan, D. and Tao, J. (2003), "Wave forces on submerged, alternately, submerged, and emerged semicircular breakwaters", Coast. Eng. J., 48(2), 75-93. https://doi.org/10.1016/S0378-3839(02)00169-2.
  30. Zelt, J.A. and Skjelbreia, J.E. (1992), "Estimating incident and reflected wave fields using arbitrary number of wave gauges", ASCE, Coastal Eng., 777-789. https://doi.org/10.1061/9780872629332.058.
  31. Zhang, H.C., Liu, S., Li, J. and Wang, L. (2019), "Establishment of numerical wave flume based on the second-order wave-maker theory", China Ocean Eng., 33, 160-171. https://doi.org/10.1007/s13344-019-0016-6.
  32. Zhu, S. (1999), "Separation of regular waves by a transfer function method", Ocean Eng., 26(12), 1435-1446. doi:10.1016/S0029-8018(98)00041-9.