과제정보
본 연구는 국립생태원 습지센터 (과제번호: NIE-A-2022-20, 과제명: 하구 생태계 조사('22)), 한국환경산업기술원(과제번호: 2020003050004, 과제명: 수생태계 건강성 확보 기술개발사업) 및 상지대학교 대학원의 지원을 받아 수행되었습니다. 본 연구 수행을 위하여 현장 시료 채집에 도움을 준 상지대학교 생명과학과 분자생태및진화학실험실 대학원 및 학부 학생들께 감사를 표합니다.
참고문헌
- Alam MJ, NK Kim, S Andriyono, HK Choi, JH Lee and HW Kim. 2020. Assessment of fish biodiversity in four Korean rivers using environmental DNA metabarcoding. PeerJ 8:e9508. https://doi.org/10.7717/peerj.9508
- Balint M, M Pfenninger, HP Grossart, P Taberlet, M Vellend, MA Leibold, G Englund and D Bowler. 2018. Environmental DNA time series in ecology. Trends Ecol. Evol. 33:945-957. https://doi.org/10.1016/j.tree.2018.09.003
- Bohmann K, A Evans, MTP Gilbert, GR Carvalho, S Creer, M Knapp, WY Douglas and M de Bruyn. 2014. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29:358-367. https://doi.org/10.1016/j.tree.2014.04.003
- Boopathi T, JB Lee, SH Youn and JS Ki. 2015. Temporal and spatial dynamics of phytoplankton diversity in the East China Sea near Jeju Island (Korea): A phyrosequencing-based study. Biochem. Syst. Ecol. 63:143-152. https://doi.org/10.1016/j.bse.2015.10.002
- Chen IS, YW Liu, SP Huang and CN Shen. 2016. The complete mitochondrial genome of the Korean minnow Nipponocypris koreanus (Cypriniformes, Cyprinidae). Mitochondrial DNA Part A. 27:708-710. https://doi.org/10.3109/19401736.2014.913153
- Clarke KR and RN Gorley. 2015. Getting Started with PRIMER v7. PRIMER-E: Plymouth. Plymouth Marine Laboratory. Plymouth, UK.
- Creer S, K Deiner, S Frey, D Porazinska, P Taberlet, WK Thomas, C Potter and HM Bik. 2016. The ecologist's field guide to sequence based identification of biodiversity. Methods Ecol. Evol. 7:1008-1018. https://doi.org/10.1111/2041-210X.12574
- Cristescu ME. 2019. Can environmental RNA revolutionize biodiversity science? Trends Ecol. Evol. 34:695-697. https://doi.org/10.1016/j.tree.2019.05.003
- Darling JA and AR Mahon. 2011. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environ. Res. 111:978-988. https://doi.org/10.1016/j.envres.2011.02.001
- Dudgeon D, AH Arthington, MO Gessner, ZI Kawabata, DJ Knowler, C Leveque, RJ Naiman, AH Prieur-Richard, D Soto, MLJ Stiassny and CA Sullivan. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81:163-182. https://doi.org/10.1017/S1464793105006950
- Ege V. 1939. A revision of the genus Auguilla Shaw, a systematic, phylogenetic and geographical study. Dana Rep. 16:1-256.
- Elliott M and DS McLusky. 2002. The need for definitions in understanding estuaries. Estuar. Coast. Shelf Sci. 55:815-827. https://doi.org/10.1006/ecss.2002.1031
- Evans NT, PD Shirey, JG Wieringa, AR Mahon and GA Lamberti. 2017. Comparative cost and effort of fish distribution detection via environmental DNA analysis and electrofishing. Fisheries 42:90-99. https://doi.org/10.1080/03632415.2017.1276329
- Garvin MR, K Saitoh, DY Churikov, VA Brykov and AJ Gharrett. 2010. Single nucleotide polymorphisms in chum salmon (Oncorhynchus keta) mitochondrial DNA derived from restriction site haplotype information. Genome 53:501-507. https://doi.org/10.1139/G10-026
- Harrison I, R Abell, W Darwall, ML Thieme, D Tickner and I Timboe. 2018. The freshwater biodiversity crisis. Science 362:1369. https://doi.org/10.1126/science.aav9242
- Helbing CC and J Hobbs. 2019. Environmental DNA Standardization Needs for Fish and Wildlife Population Assessments and Monitoring. Canadian Standards Association Group. Toronto, Canada.
- Heo JW, HS Kang, HG Lee, SH Park, KW Kim, SY Jeong, JH Lee, JW LEE, JS Han, KH Kim, SC Han, MS Kong and BS Choi. 2016. Monitoring on Aquatic Ecosystem to Capture of Largemouth Bass (Micropterus salmoides): 2nd Report. Water Management Committees of the Geum River. Daejeon, Korea.
- Hopkins GW and RP Freckleton. 2002. Declines in the numbers of amateur and professional taxonomists: Implications for conservation. Anim. Conserv. 5:245-249. https://doi.org/10.1017/S1367943002002299
- Hu W, C Su, Q Liu, Y Kong, S Hua and Z Hu. 2022. Comparison of fish communities using environmental DNA metabarcoding and capture methods in a freshwater lake: A new set of universal PCR primers. Fish. Res. 253:106365. https://doi.org/10.1016/j.fishres.2022.106365
- Hwang SY, KH Han, WK Lee, SM Yoon, CC Kim, SH Lee, WI Seo and SS Roh. 2006. Early life history of the Tridentiger obscurus(Pisces, Gobiidae). Dev. Reprod. 10:47-54.
- Itakura H, R Wakiya, S Yamamoto, K Kaifu, T Sato and T Minamoto 2019. Environmental DNA analysis reveals the spatial distribution, abundance, and biomass of Japanese eels at the river basin scale. Aquat. Conserv.-Mar. Freshw. Ecosyst. 29:361-373. https://doi.org/10.1002/aqc.3058
- Jang JE, JK Kim, SM Yoon, HG Hwang, WO Lee, JH Kang and HJ Lee. 2022. Low genetic diversity, local-scale structure, and distinct genetic integrity of Korean chum salmon (Oncorhynchus keta) at the species range margin suggest a priority for conservation efforts. Evol. Appl. 15:2142-2157. https://doi.org/10.1111/eva.13506
- Jang MH, KR Choi and GJ Joo. 2001. Fish community of headwater streams in Gaji mountain, Ulsan. Korean J. Ecol. Environ. 34:239-250.
- Jung SW, JH Lee, T Kawai, PJ Kim and S Kim. 2022. Distribution status of invasive alien species (Procambarus clarkii (Girard, 1852)) using biomonitoring with environmental DNA in South Korea. Korean J. Ecol. Environ. 36:368-380. https://doi.org/10.13047/KJEE.2022.36.4.368
- Kang Y, JE Jeon, SW Han, S Won and Y Song. 2023. Feasibility of environmental DNA metabarcoding for invasive species detection according to taxa. J. Environ. Impact Assess. 32:94-111. https://doi.org/10.14249/eia.2023.32.2.94
- Kato-Unoki Y, K Umemura and K Tashiro. 2020. Fingerprinting of hatchery haplotypes and acquisition of genetic information by whole-mitogenome sequencing of masu salmon, Oncorhynchus masou masou, in the Kase River system, Japan. PLoS One 15:e0240823. https://doi.org/10.1371/journal.pone.0240823
- Kim CH, EJ Kang, H Yang, KW Kim and WS Choi. 2012. Charactristics of fish fauna collected from near estuary of Seomjin River and population ecology. Korean J. Environ. Biol. 30:319-327. https://doi.org/10.11626/KJEB.2012.30.4.319
- Kim G and YK Song. 2021. Identification of freshwater fish species in Korea using environmental DNA technique. J. Environ. Impact Assess. 30:1-12. https://doi.org/10.14249/eia.2021.30.1.1
- Kim IS. 1997. Illustrated Encyclopedia of Fauna & Flora of Korea. Vol. 37, Freshwater Fishes. Ministry of Education. Seoul, Korea.
- Kim IS and JY Park. 2002. Freshwater Fishes of Korea. Kyohaksa. Seoul, Korea.
- Kim IS, MK Oh and K Hosoya. 2005. A new species of cyprinid fish, Zacco koreanus with redescription of Z. temminckii (Cyprinidae) from Korea. Korean J. Ichthyol. 17:1-7.
- Kim JE and KG An. 2021. Long-term distribution trend analysis of largemouth bass (Micropterus salmoides), based on National Fish Database, and the ecological risk assessments. Korean J. Environ. Biol. 39:207-217. https://doi.org/10.11626/KJEB.2021.39.2.207
- Kim JH, H Jo, MH Chang, SH Woo, Y Cho and JD Yoon. 2020a. Application of environmental DNA for monitoring of freshwater fish in Korea. Korean J. Ecol. Environ. 53:63-72. https://doi.org/10.11614/KSL.2020.53.1.063
- Kim JW, KJ Kim, BM Choi, KL Lee, MH Jang and JD Yoon. 2022. The application of a fish-based multi-metric index for the assessment of ecological qualities of estuaries in the Korean Peninsula. Sustainability 14:11608. https://doi.org/10.3390/su141811608
- Kim P, D Kim, TJ Yoon and S Shin. 2018. Early detection of marine invasive species, Bugula neritina (Bryozoa: Cheilostomatida), using species-specific primers and environmental DNA analysis in Korea. Mar. Environ. Res. 139:1-10. https://doi.org/10.1016/j.marenvres.2018.04.015
- Kim SH, WO Kim and KH Cho. 2014. Effects of habitat disturbance on fish community structure in a gravel-bed stream, Korea. Ecol. Resil. Infrastruct. 1:49-60. https://doi.org/10.17820/eri.2014.1.2.049
- Kim YP and KG An. 2010. Characteristics of physico-chemical water quality characteristics in taehwa-river watershed and stream ecosystem health assessments by a multimetric fish model and community analysis. Korean J. Ecol. Environ. 43:428-436.
- Kim YR, JE Jang, HK Choi and HJ Lee. 2020b. Phylogeographic and population genetic study of a Korean endemic freshwater fish species, Zacco koreanus. Korean J. Environ. Biol. 38:650-657. https://doi.org/10.11626/KJEB.2020.38.4.650
- Kostechi C, F Le Loch, JM Roussel, N Desroy, D Huteau, P Riera, H Le Bris and O Le Pape. 2010. Dynamics of an estuarine nursery ground: the spatio-temporal relationship between the river flow and the food web of the juvenile common sole (Solea solea L.) as revealed by stable isotopes analysis. J. Sea Res. 64:54-60. https://doi.org/10.1016/j.seares.2009.07.006
- Kumari R, SK Shukla, K Parmar, N Bordoloi, A Kumar and P Saikia. 2020. Wetlands conservation and restoration for ecosystem services and halt biodiversity loss: An Indian perspective. pp. 75-85. In: Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment (Upadhyay AK, R Singh and DP Singh, eds.). Springer. Singapore. https://doi.org/10.1007/978-981-13-7665-8_6
- Lee HG, CR Jang and JK Choi. 2013. The characteristics of fish fauna by habitat type and population of Zacco platypus in the Hongcheon River. Korean J. Environ. Ecol. 27:230-240.
- Lee HJ, YR Kim, H-k Choi, SY Byeon, SY Hwang, K-G An, SJ Ki and D-Y Bae. 2024. Seasonal variation in longitudinal connectivity for fish community in the Hotancheon from the Geum River, as assessed by environmental DNA (eDNA) metabarcoding. J. Ecol. Environ. in press.
- Margalef R. 1968. Perspectives in Ecological Theory. Chicago University Press. Chicago, Illinois, USA.
- McCann KS. 2000. The diversity-stability debate. Nature 405:228-233. https://doi.org/10.1038/35012234
- McNaughton SJ. 1967. Relationship among functional properties of California Grassland. Nature 216:114-168. https://doi.org/10.1038/216168B0
- Miya M, Y Sato, T Fukunaga, T Sado, JY Poulsen, K Sato and M Kondoh. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2:150088. https://doi.org/10.1098/rsos.150088
- MOE/NIBR. 2016-2021. The Survey and Evaluation of Aquatic Ecosystem Health in Korea. Ministry of Environment/National Institute of Biological Resources. Sejong/Incehon, Korea.
- Nakamura M. 1969. Cyprinid Fishes of Japan: Studies on the Life History of Cyprinid Fishes of Japan. Research Institute for Natural Resources. Tokyo, Japan.
- Nelson JS. 2006. Fishes of the World. John Wiley & Sons. Hoboken, New Jersey, USA.
- NIBR. 2020. Analysis of Species Diversity for Freshwater Ecosystems Based on Environmental DNA (eDNA) Metabarcoding Analysis. National Institute of Biological Resources. Incheon, Korea.
- Nishida M. 1986. Geographic variation in the molecular, morphological and reproductive characters of the ayu Plecoglossus altivelis (Plecoglossidae) in the Japan-Ryukyu Archipelago. Jpn. J. Ichthyol. 33:232-248. https://doi.org/10.11369/jji1950.33.232
- Oh MK and JY Park. 2009. A molecular systematics of Korean Zacco species inferred from mitochondrial cytochrome b gene sequence. Korean J. Ichthyol. 21:291-298.
- Park SH, SH Baek, JH Kim, DH Kim, MH Jang, DH Won, BK Park and JS Moon. 2022. Fish community structure and biodiversity of the Korean Peninsula Estuaries. Korean J. Ecol. Environ. 55:35-48. https://doi.org/10.11614/KSL.2022.55.1.035
- Pielou EC. 1966. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13:131-144. https://doi.org/10.1016/0022-5193(66)90013-0
- Pikitch EK. 2018. A tool for finding rare marine species. Science 360:1180-1182. https://doi.org/10.1126/science.aao3787
- Rees HC, BC Maddison, DJ Middleditch, JRM Patmore, KC Gough and E Crispo. 2014. The detection of aquatic animal species using environmental DNA: A review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51:1450-1459. https://doi.org/10.1111/1365-2664.12306
- Rees HC, KC Gough, DJ Middleditch, JRM Patmore, BC Maddison and E Crispo. 2015. Applications and limitations of measuring environmental DNA as indicators of the presence of aquatic animals. J. Appl. Ecol. 52:827-831. https://doi.org/10.1111/1365-2664.12467
- Reid AJ, AK Carlson, IF Creed, EJ Eliason, PA Gell, PT Johnson, KA Kidd, TJ MacCormack, JD Olden, SJ Ormerod, JP Smol, WW Taylor, K Tockner, JC Vermaire, D Dudgeon and SJ Cooke. 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94:849-873. https://doi.org/10.1111/brv.12480
- Ruppert KM, RJ Kline and MS Rahman. 2019. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17:e00547. https://doi.org/10.1016/j.gecco.2019.e00547
- Shannon CE and W Weaver. 1949. The Mathematical Theory of Communication. The University of Illinois Press. Urbana, Illinois, USA.
- Shaw JL, LJ Clarke, SD Wedderburn, TC Barnes, LS Weyrich and A Cooper. 2016. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol. Conserv. 197:131-138. https://doi.org/10.1016/j.biocon.2016.03.010
- Shigenobu Y, K Saitoh, KI Hayashizaki and H Ida. 2005. Nonsynonymous site heteroplasmy in fish mitochondrial DNA. Genes Genet. Syst. 80:297-301. https://doi.org/10.1266/ggs.80.297
- Smart AS, R Tingley, AR Weeks, AR van Rooyen and MA McCarthy. 2015. Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecol. Appl. 25:1944-1952. https://doi.org/10.1890/14-1751.1
- Song HY and IC Bang. 2015. Coreoleuciscus aeruginos (Teleostei: Cypriniformes: Cyprinidae), a new species from the Seomjin and Nakdong rivers, Korea. Zootaxa 3931:140-150. https://doi.org/10.11646/zootaxa.3931.1.10
- Song YK, JH. Kim, SY Won and C Park. 2019. Possibility in identifying species composition of fish communities using the environmental DNA metabarcoding technique with the preliminary results at urban ecological streams. J. Korean Environ. Res. Tech. 22:125-138. https://doi.org/10.13087/kosert.2019.22.6.125
- Taberlet P, E Coissac, M Hajibabaei and LH Rieseberg. 2012. Environmental DNA. Mol. Ecol. 21:1789-1793. https://doi.org/10.1111/j.1365-294X.2012.05542.x
- Thomsen PF and E Willerslev. 2015. Environmental DNA - An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183:4-18. https://doi.org/10.1016/j.biocon.2014.11.019
- Thomsen PF, J Kielgast, LL Iversen, C Wiuf, M Rasmussen, MTP Gilbert, L Orlando and E Willerslev. 2012. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21:2565-2573. https://doi.org/10.1111/j.1365-294X.2011.05418.x
- Wang Y, X Zhang, S Yang and Z Song. 2011. The complete mitochondrial genome of the taimen, Hucho taimen, and its unusual features in the control region. Mitochondrial DNA 22:111-119. https://doi.org/10.3109/19401736.2011.624605
- Won NI, KH Kim, JH Kang, SR Park and HJ Lee. 2017. Exploring the impacts of anthropogenic disturbance on seawater and sediment microbial communities in Korean coastal waters using metagenomics analysis. Int. J. Environ. Res. Public Health 14:130. https://doi.org/10.3390/ijerph14020130
- WWF. 2018. Living Planet Report - 2018: Aiming Higher(Grooten M and REA Almond, eds.). World Wildlife Foundation. Gland, Switzerland.
- Yoon JD, JH Kim, SH Park and MH Jang. 2018. The distribution and diversity of freshwater fishes in Korean peninsula. Korean J. Ecol. Environ. 51:71-85. https://doi.org/10.11614/KSL.2018.51.1.071
- Zou K, J Chen, H Ruan, Z Li, W Guo, M Li and L Liu. 2020. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling. Sci. Total Environ. 702:134704. https://doi.org/10.1016/j.scitotenv.2019.134704