DOI QR코드

DOI QR Code

어구조사 및 환경 DNA 메타바코딩을 이용한 태화강, 창원천 하구 생태계의 어류 군집 구조 및 종 다양성 평가

Investigation of fish community structure and species diversity in two river estuary ecosystems, the Taehwa River and Changwon Stream, based on conventional survey and eDNA metabarcoding

  • 최희규 (상지대학교 생명과학과 분자생태및진화학실험실) ;
  • 김유림 (상지대학교 생명과학과 분자생태및진화학실험실) ;
  • 황순영 (상지대학교 생명과학과 분자생태및진화학실험실) ;
  • 추연수 (국립생태원 습지연구팀) ;
  • 김평범 (국립생태원 습지연구팀) ;
  • 이혁제 (상지대학교 생명과학과 분자생태및진화학실험실)
  • Hee-kyu Choi (Molecular Ecology and Evolution Laboratory, Department of Biological Science, Sangji University) ;
  • Yu Rim Kim (Molecular Ecology and Evolution Laboratory, Department of Biological Science, Sangji University) ;
  • Soon Young Hwang (Molecular Ecology and Evolution Laboratory, Department of Biological Science, Sangji University) ;
  • Yeounsu Chu (Wetlands Research Team, National Institute of Ecology) ;
  • Pyoungbeom Kim (Wetlands Research Team, National Institute of Ecology) ;
  • Hyuk Je Lee (Molecular Ecology and Evolution Laboratory, Department of Biological Science, Sangji University)
  • 투고 : 2023.10.09
  • 심사 : 2023.12.22
  • 발행 : 2023.12.31

초록

강 하구는 높은 생산성을 나타내는 생물다양성이 가장 높은 대표 수생태계이다. 환경 DNA (eDNA)를 이용한 수생태계 모니터링은 현장의 환경 시료를 확보하여 시료 내 존재하는 생물로부터 유래된 DNA를 추출하는 방법으로서 기존의 어구를 이용한 현장조사 모니터링에 비해 효율적이고 민감도가 높아 보완적인 방법으로 이용되고 있다. 본 연구는 낙동강 수계 하구 생태계를 대표하는 내륙 습지 하천인 태화강과 창원천을 대상으로 환경특성, 어류 군집구조와 종 다양성을 파악하였다. 태화강에서는 양측회유성, 소하성 및 강하성 어류인 은어, 황어 및 뱀장어의 서식이 대부분의 조사 시기 동안 확인되어 연안에서부터 중류 및 지류까지 비교적 원활한 서식처 종적 연결성을 나타내는 생태계임을 알 수 있었다. 또한, 창원천의 경우 특히 바다와 가까운 내륙 습지 하천으로 많은 다양한 해산어류 및 망둑어류의 서식이 확인되었으나, 회유성 어종인 은어는 환경 DNA에서만 검출되었고 현장조사에서는 관찰되지 않았다. 어구조사를 통한 종 다양성 평가 결과 태화강이 창원천에 비해 낮은 우점도지수, 높은 풍부도, 균등도, 다양도지수 수치를 나타내어 상대적으로 양호한 어류 군집 구조 상태를 나타냈다. 어구를 이용한 현장조사와 환경 DNA 메타바코딩 기법을 이용하여 태화강과 창원천 하구 생태계 어류 군집 구조 및 종 다양성을 비교 분석하였다. 어구를 이용한 3회 현장조사 결과 9~19종이 확인되었고 환경 DNA 1회 분석 결과 11~18종으로 환경 DNA 분석이 현장조사 결과와 유사한 수준의 종 수를 확인할 수 있었다. 어구를 이용한 5월 현장조사 결과는 6~11종이 확인된 점을 고려하면 환경 DNA가 종 탐지에서 민감도가 더 높음을 알 수 있었다. 환경 DNA를 이용한 수생태계 모니터링을 위한 어류 종 탐지의 잠재적인 효용성을 확인할 수 있었으나 우리나라 고유종 및 유전적으로 가까운 근연종들의 경우 명확한 종 동정에 어려움이 있었으며, 현장조사 시 관찰되었으나 환경 DNA에서 검출되지 않은 경우(위음성; false negative)와 현장조사 시 관찰되지 않은 종이 환경 DNA에서 검출(위양성; false positive)되는 자료의 한계점도 존재하였다. 향후 국내 고유종의 local DB 확보, 환경 DNA 조사 표준화 방법 구축, 국내 담수어류 대상 분자마커 개발 등이 확립된다면 수생태계 모니터링에 아주 효율적이며 실용적인 조사 방법으로 적용될 수 있을 것으로 판단된다.

River estuaries are dynamic and productive ecosystems with high regional biodiversity. Environmental DNA (eDNA) has become a useful approach to assessing biodiversity in aquatic ecosystems. This study was conducted to investigate fish community characteristics and species diversity in two river estuary ecosystems, the Taehwa River and Changwon Stream. We further compared conventional and eDNA metabarcoding analyses of the fish communities. The conventional survey was performed in May, July, and October 2022, while the eDNA analysis was conducted only in May. We observed various fish species with different life histories, including carp, goby, and marine fish. We also found that migratory fish, such as dace Tribolodon hakonensis, sweetfish Plecoglossus altivelis, and eel Auguilla japonica, occurred in the Taehwa River, suggesting high river connectivity. Marine fish species were predominant in the Changwon Stream, as this river is located close to the sea. The diversity indices showed that the Taehwa River generally had higher species richness, evenness, and diversity values than the Changwon Stream. A total of 9-19 species were detected in the conventional survey for the three sites, whereas 11-18 species were found from eDNA analysis. The findings indicate that the sensitivity of eDNA was similar to or higher than that of the conventional method. Our study findings suggest the efficiency and efficacy of eDNA-based fish community monitoring, although with some shortcomings in applying the genetic marker to Korean fish, including no clear-cut distinction for Korean endemic species and/or genetically closely related species groups.

키워드

과제정보

본 연구는 국립생태원 습지센터 (과제번호: NIE-A-2022-20, 과제명: 하구 생태계 조사('22)), 한국환경산업기술원(과제번호: 2020003050004, 과제명: 수생태계 건강성 확보 기술개발사업) 및 상지대학교 대학원의 지원을 받아 수행되었습니다. 본 연구 수행을 위하여 현장 시료 채집에 도움을 준 상지대학교 생명과학과 분자생태및진화학실험실 대학원 및 학부 학생들께 감사를 표합니다.

참고문헌

  1. Alam MJ, NK Kim, S Andriyono, HK Choi, JH Lee and HW Kim. 2020. Assessment of fish biodiversity in four Korean rivers using environmental DNA metabarcoding. PeerJ 8:e9508. https://doi.org/10.7717/peerj.9508
  2. Balint M, M Pfenninger, HP Grossart, P Taberlet, M Vellend, MA Leibold, G Englund and D Bowler. 2018. Environmental DNA time series in ecology. Trends Ecol. Evol. 33:945-957. https://doi.org/10.1016/j.tree.2018.09.003
  3. Bohmann K, A Evans, MTP Gilbert, GR Carvalho, S Creer, M Knapp, WY Douglas and M de Bruyn. 2014. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29:358-367. https://doi.org/10.1016/j.tree.2014.04.003
  4. Boopathi T, JB Lee, SH Youn and JS Ki. 2015. Temporal and spatial dynamics of phytoplankton diversity in the East China Sea near Jeju Island (Korea): A phyrosequencing-based study. Biochem. Syst. Ecol. 63:143-152. https://doi.org/10.1016/j.bse.2015.10.002
  5. Chen IS, YW Liu, SP Huang and CN Shen. 2016. The complete mitochondrial genome of the Korean minnow Nipponocypris koreanus (Cypriniformes, Cyprinidae). Mitochondrial DNA Part A. 27:708-710. https://doi.org/10.3109/19401736.2014.913153
  6. Clarke KR and RN Gorley. 2015. Getting Started with PRIMER v7. PRIMER-E: Plymouth. Plymouth Marine Laboratory. Plymouth, UK.
  7. Creer S, K Deiner, S Frey, D Porazinska, P Taberlet, WK Thomas, C Potter and HM Bik. 2016. The ecologist's field guide to sequence based identification of biodiversity. Methods Ecol. Evol. 7:1008-1018. https://doi.org/10.1111/2041-210X.12574
  8. Cristescu ME. 2019. Can environmental RNA revolutionize biodiversity science? Trends Ecol. Evol. 34:695-697. https://doi.org/10.1016/j.tree.2019.05.003
  9. Darling JA and AR Mahon. 2011. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environ. Res. 111:978-988. https://doi.org/10.1016/j.envres.2011.02.001
  10. Dudgeon D, AH Arthington, MO Gessner, ZI Kawabata, DJ Knowler, C Leveque, RJ Naiman, AH Prieur-Richard, D Soto, MLJ Stiassny and CA Sullivan. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81:163-182. https://doi.org/10.1017/S1464793105006950
  11. Ege V. 1939. A revision of the genus Auguilla Shaw, a systematic, phylogenetic and geographical study. Dana Rep. 16:1-256.
  12. Elliott M and DS McLusky. 2002. The need for definitions in understanding estuaries. Estuar. Coast. Shelf Sci. 55:815-827. https://doi.org/10.1006/ecss.2002.1031
  13. Evans NT, PD Shirey, JG Wieringa, AR Mahon and GA Lamberti. 2017. Comparative cost and effort of fish distribution detection via environmental DNA analysis and electrofishing. Fisheries 42:90-99. https://doi.org/10.1080/03632415.2017.1276329
  14. Garvin MR, K Saitoh, DY Churikov, VA Brykov and AJ Gharrett. 2010. Single nucleotide polymorphisms in chum salmon (Oncorhynchus keta) mitochondrial DNA derived from restriction site haplotype information. Genome 53:501-507. https://doi.org/10.1139/G10-026
  15. Harrison I, R Abell, W Darwall, ML Thieme, D Tickner and I Timboe. 2018. The freshwater biodiversity crisis. Science 362:1369. https://doi.org/10.1126/science.aav9242
  16. Helbing CC and J Hobbs. 2019. Environmental DNA Standardization Needs for Fish and Wildlife Population Assessments and Monitoring. Canadian Standards Association Group. Toronto, Canada.
  17. Heo JW, HS Kang, HG Lee, SH Park, KW Kim, SY Jeong, JH Lee, JW LEE, JS Han, KH Kim, SC Han, MS Kong and BS Choi. 2016. Monitoring on Aquatic Ecosystem to Capture of Largemouth Bass (Micropterus salmoides): 2nd Report. Water Management Committees of the Geum River. Daejeon, Korea.
  18. Hopkins GW and RP Freckleton. 2002. Declines in the numbers of amateur and professional taxonomists: Implications for conservation. Anim. Conserv. 5:245-249. https://doi.org/10.1017/S1367943002002299
  19. Hu W, C Su, Q Liu, Y Kong, S Hua and Z Hu. 2022. Comparison of fish communities using environmental DNA metabarcoding and capture methods in a freshwater lake: A new set of universal PCR primers. Fish. Res. 253:106365. https://doi.org/10.1016/j.fishres.2022.106365
  20. Hwang SY, KH Han, WK Lee, SM Yoon, CC Kim, SH Lee, WI Seo and SS Roh. 2006. Early life history of the Tridentiger obscurus(Pisces, Gobiidae). Dev. Reprod. 10:47-54.
  21. Itakura H, R Wakiya, S Yamamoto, K Kaifu, T Sato and T Minamoto 2019. Environmental DNA analysis reveals the spatial distribution, abundance, and biomass of Japanese eels at the river basin scale. Aquat. Conserv.-Mar. Freshw. Ecosyst. 29:361-373. https://doi.org/10.1002/aqc.3058
  22. Jang JE, JK Kim, SM Yoon, HG Hwang, WO Lee, JH Kang and HJ Lee. 2022. Low genetic diversity, local-scale structure, and distinct genetic integrity of Korean chum salmon (Oncorhynchus keta) at the species range margin suggest a priority for conservation efforts. Evol. Appl. 15:2142-2157. https://doi.org/10.1111/eva.13506
  23. Jang MH, KR Choi and GJ Joo. 2001. Fish community of headwater streams in Gaji mountain, Ulsan. Korean J. Ecol. Environ. 34:239-250.
  24. Jung SW, JH Lee, T Kawai, PJ Kim and S Kim. 2022. Distribution status of invasive alien species (Procambarus clarkii (Girard, 1852)) using biomonitoring with environmental DNA in South Korea. Korean J. Ecol. Environ. 36:368-380. https://doi.org/10.13047/KJEE.2022.36.4.368
  25. Kang Y, JE Jeon, SW Han, S Won and Y Song. 2023. Feasibility of environmental DNA metabarcoding for invasive species detection according to taxa. J. Environ. Impact Assess. 32:94-111. https://doi.org/10.14249/eia.2023.32.2.94
  26. Kato-Unoki Y, K Umemura and K Tashiro. 2020. Fingerprinting of hatchery haplotypes and acquisition of genetic information by whole-mitogenome sequencing of masu salmon, Oncorhynchus masou masou, in the Kase River system, Japan. PLoS One 15:e0240823. https://doi.org/10.1371/journal.pone.0240823
  27. Kim CH, EJ Kang, H Yang, KW Kim and WS Choi. 2012. Charactristics of fish fauna collected from near estuary of Seomjin River and population ecology. Korean J. Environ. Biol. 30:319-327. https://doi.org/10.11626/KJEB.2012.30.4.319
  28. Kim G and YK Song. 2021. Identification of freshwater fish species in Korea using environmental DNA technique. J. Environ. Impact Assess. 30:1-12. https://doi.org/10.14249/eia.2021.30.1.1
  29. Kim IS. 1997. Illustrated Encyclopedia of Fauna & Flora of Korea. Vol. 37, Freshwater Fishes. Ministry of Education. Seoul, Korea.
  30. Kim IS and JY Park. 2002. Freshwater Fishes of Korea. Kyohaksa. Seoul, Korea.
  31. Kim IS, MK Oh and K Hosoya. 2005. A new species of cyprinid fish, Zacco koreanus with redescription of Z. temminckii (Cyprinidae) from Korea. Korean J. Ichthyol. 17:1-7.
  32. Kim JE and KG An. 2021. Long-term distribution trend analysis of largemouth bass (Micropterus salmoides), based on National Fish Database, and the ecological risk assessments. Korean J. Environ. Biol. 39:207-217. https://doi.org/10.11626/KJEB.2021.39.2.207
  33. Kim JH, H Jo, MH Chang, SH Woo, Y Cho and JD Yoon. 2020a. Application of environmental DNA for monitoring of freshwater fish in Korea. Korean J. Ecol. Environ. 53:63-72. https://doi.org/10.11614/KSL.2020.53.1.063
  34. Kim JW, KJ Kim, BM Choi, KL Lee, MH Jang and JD Yoon. 2022. The application of a fish-based multi-metric index for the assessment of ecological qualities of estuaries in the Korean Peninsula. Sustainability 14:11608. https://doi.org/10.3390/su141811608
  35. Kim P, D Kim, TJ Yoon and S Shin. 2018. Early detection of marine invasive species, Bugula neritina (Bryozoa: Cheilostomatida), using species-specific primers and environmental DNA analysis in Korea. Mar. Environ. Res. 139:1-10. https://doi.org/10.1016/j.marenvres.2018.04.015
  36. Kim SH, WO Kim and KH Cho. 2014. Effects of habitat disturbance on fish community structure in a gravel-bed stream, Korea. Ecol. Resil. Infrastruct. 1:49-60. https://doi.org/10.17820/eri.2014.1.2.049
  37. Kim YP and KG An. 2010. Characteristics of physico-chemical water quality characteristics in taehwa-river watershed and stream ecosystem health assessments by a multimetric fish model and community analysis. Korean J. Ecol. Environ. 43:428-436.
  38. Kim YR, JE Jang, HK Choi and HJ Lee. 2020b. Phylogeographic and population genetic study of a Korean endemic freshwater fish species, Zacco koreanus. Korean J. Environ. Biol. 38:650-657. https://doi.org/10.11626/KJEB.2020.38.4.650
  39. Kostechi C, F Le Loch, JM Roussel, N Desroy, D Huteau, P Riera, H Le Bris and O Le Pape. 2010. Dynamics of an estuarine nursery ground: the spatio-temporal relationship between the river flow and the food web of the juvenile common sole (Solea solea L.) as revealed by stable isotopes analysis. J. Sea Res. 64:54-60. https://doi.org/10.1016/j.seares.2009.07.006
  40. Kumari R, SK Shukla, K Parmar, N Bordoloi, A Kumar and P Saikia. 2020. Wetlands conservation and restoration for ecosystem services and halt biodiversity loss: An Indian perspective. pp. 75-85. In: Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment (Upadhyay AK, R Singh and DP Singh, eds.). Springer. Singapore. https://doi.org/10.1007/978-981-13-7665-8_6
  41. Lee HG, CR Jang and JK Choi. 2013. The characteristics of fish fauna by habitat type and population of Zacco platypus in the Hongcheon River. Korean J. Environ. Ecol. 27:230-240.
  42. Lee HJ, YR Kim, H-k Choi, SY Byeon, SY Hwang, K-G An, SJ Ki and D-Y Bae. 2024. Seasonal variation in longitudinal connectivity for fish community in the Hotancheon from the Geum River, as assessed by environmental DNA (eDNA) metabarcoding. J. Ecol. Environ. in press.
  43. Margalef R. 1968. Perspectives in Ecological Theory. Chicago University Press. Chicago, Illinois, USA.
  44. McCann KS. 2000. The diversity-stability debate. Nature 405:228-233. https://doi.org/10.1038/35012234
  45. McNaughton SJ. 1967. Relationship among functional properties of California Grassland. Nature 216:114-168. https://doi.org/10.1038/216168B0
  46. Miya M, Y Sato, T Fukunaga, T Sado, JY Poulsen, K Sato and M Kondoh. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2:150088. https://doi.org/10.1098/rsos.150088
  47. MOE/NIBR. 2016-2021. The Survey and Evaluation of Aquatic Ecosystem Health in Korea. Ministry of Environment/National Institute of Biological Resources. Sejong/Incehon, Korea.
  48. Nakamura M. 1969. Cyprinid Fishes of Japan: Studies on the Life History of Cyprinid Fishes of Japan. Research Institute for Natural Resources. Tokyo, Japan.
  49. Nelson JS. 2006. Fishes of the World. John Wiley & Sons. Hoboken, New Jersey, USA.
  50. NIBR. 2020. Analysis of Species Diversity for Freshwater Ecosystems Based on Environmental DNA (eDNA) Metabarcoding Analysis. National Institute of Biological Resources. Incheon, Korea.
  51. Nishida M. 1986. Geographic variation in the molecular, morphological and reproductive characters of the ayu Plecoglossus altivelis (Plecoglossidae) in the Japan-Ryukyu Archipelago. Jpn. J. Ichthyol. 33:232-248. https://doi.org/10.11369/jji1950.33.232
  52. Oh MK and JY Park. 2009. A molecular systematics of Korean Zacco species inferred from mitochondrial cytochrome b gene sequence. Korean J. Ichthyol. 21:291-298.
  53. Park SH, SH Baek, JH Kim, DH Kim, MH Jang, DH Won, BK Park and JS Moon. 2022. Fish community structure and biodiversity of the Korean Peninsula Estuaries. Korean J. Ecol. Environ. 55:35-48. https://doi.org/10.11614/KSL.2022.55.1.035
  54. Pielou EC. 1966. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13:131-144. https://doi.org/10.1016/0022-5193(66)90013-0
  55. Pikitch EK. 2018. A tool for finding rare marine species. Science 360:1180-1182. https://doi.org/10.1126/science.aao3787
  56. Rees HC, BC Maddison, DJ Middleditch, JRM Patmore, KC Gough and E Crispo. 2014. The detection of aquatic animal species using environmental DNA: A review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51:1450-1459. https://doi.org/10.1111/1365-2664.12306
  57. Rees HC, KC Gough, DJ Middleditch, JRM Patmore, BC Maddison and E Crispo. 2015. Applications and limitations of measuring environmental DNA as indicators of the presence of aquatic animals. J. Appl. Ecol. 52:827-831. https://doi.org/10.1111/1365-2664.12467
  58. Reid AJ, AK Carlson, IF Creed, EJ Eliason, PA Gell, PT Johnson, KA Kidd, TJ MacCormack, JD Olden, SJ Ormerod, JP Smol, WW Taylor, K Tockner, JC Vermaire, D Dudgeon and SJ Cooke. 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94:849-873. https://doi.org/10.1111/brv.12480
  59. Ruppert KM, RJ Kline and MS Rahman. 2019. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17:e00547. https://doi.org/10.1016/j.gecco.2019.e00547
  60. Shannon CE and W Weaver. 1949. The Mathematical Theory of Communication. The University of Illinois Press. Urbana, Illinois, USA.
  61. Shaw JL, LJ Clarke, SD Wedderburn, TC Barnes, LS Weyrich and A Cooper. 2016. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol. Conserv. 197:131-138. https://doi.org/10.1016/j.biocon.2016.03.010
  62. Shigenobu Y, K Saitoh, KI Hayashizaki and H Ida. 2005. Nonsynonymous site heteroplasmy in fish mitochondrial DNA. Genes Genet. Syst. 80:297-301. https://doi.org/10.1266/ggs.80.297
  63. Smart AS, R Tingley, AR Weeks, AR van Rooyen and MA McCarthy. 2015. Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecol. Appl. 25:1944-1952. https://doi.org/10.1890/14-1751.1
  64. Song HY and IC Bang. 2015. Coreoleuciscus aeruginos (Teleostei: Cypriniformes: Cyprinidae), a new species from the Seomjin and Nakdong rivers, Korea. Zootaxa 3931:140-150. https://doi.org/10.11646/zootaxa.3931.1.10
  65. Song YK, JH. Kim, SY Won and C Park. 2019. Possibility in identifying species composition of fish communities using the environmental DNA metabarcoding technique with the preliminary results at urban ecological streams. J. Korean Environ. Res. Tech. 22:125-138. https://doi.org/10.13087/kosert.2019.22.6.125
  66. Taberlet P, E Coissac, M Hajibabaei and LH Rieseberg. 2012. Environmental DNA. Mol. Ecol. 21:1789-1793. https://doi.org/10.1111/j.1365-294X.2012.05542.x
  67. Thomsen PF and E Willerslev. 2015. Environmental DNA - An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183:4-18. https://doi.org/10.1016/j.biocon.2014.11.019
  68. Thomsen PF, J Kielgast, LL Iversen, C Wiuf, M Rasmussen, MTP Gilbert, L Orlando and E Willerslev. 2012. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21:2565-2573. https://doi.org/10.1111/j.1365-294X.2011.05418.x
  69. Wang Y, X Zhang, S Yang and Z Song. 2011. The complete mitochondrial genome of the taimen, Hucho taimen, and its unusual features in the control region. Mitochondrial DNA 22:111-119. https://doi.org/10.3109/19401736.2011.624605
  70. Won NI, KH Kim, JH Kang, SR Park and HJ Lee. 2017. Exploring the impacts of anthropogenic disturbance on seawater and sediment microbial communities in Korean coastal waters using metagenomics analysis. Int. J. Environ. Res. Public Health 14:130. https://doi.org/10.3390/ijerph14020130
  71. WWF. 2018. Living Planet Report - 2018: Aiming Higher(Grooten M and REA Almond, eds.). World Wildlife Foundation. Gland, Switzerland.
  72. Yoon JD, JH Kim, SH Park and MH Jang. 2018. The distribution and diversity of freshwater fishes in Korean peninsula. Korean J. Ecol. Environ. 51:71-85. https://doi.org/10.11614/KSL.2018.51.1.071
  73. Zou K, J Chen, H Ruan, Z Li, W Guo, M Li and L Liu. 2020. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling. Sci. Total Environ. 702:134704. https://doi.org/10.1016/j.scitotenv.2019.134704