DOI QR코드

DOI QR Code

Insecticidal response of 14 insecticides against Korean Bemisia tabaci local populations

14종 살충제의 담배가루이 성충에 대한 살충제 약제반응 조사

  • In-Hong Jeong (Crop Protection Division, National Institute of Agricultural Science, RDA) ;
  • Leesun Kim (Crop Protection Division, National Institute of Agricultural Science, RDA) ;
  • So-Hee Kim (Environmental Agricultural Research Division, Gyeonggi-do Agricultural Research and Extension Services) ;
  • Jong Hyeok Lee (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kyungjae Andrew Yoon (Department of Agricultural Biotechnology, Seoul National University) ;
  • Si Hyeock Lee (Department of Agricultural Biotechnology, Seoul National University)
  • 정인홍 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 김이선 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 김소희 (경기도농업기술원 환경농업연구과) ;
  • 이종혁 (서울대학교 농생명공학부) ;
  • 윤경재 (서울대학교 농생명공학부) ;
  • 이시혁 (서울대학교 농생명공학부)
  • Received : 2023.09.21
  • Accepted : 2023.12.15
  • Published : 2023.12.31

Abstract

Bemisia tabaci Gennadius, one of the most invasive insect pests, has spread quickly nationwide since it was introduced to South Korea in 2008. The use of insecticides is the main management strategy for this pest, but the control efficiency has been decreased due to insecticide resistance. We collected 12 local B. tabaci populations to investigate the regional differences in efficiency and observed the mortality from 14 commercial insecticides applied at recommended concentrations (RC) and dilutions (0.1 RC and 0.01 RC) using the leaf dipping bioassay. Except for etofenprox (46-64%), thiamethoxam (37-60%), pyriproxyfen (21-61%), and pyridaben (61-65%), the other insecticides showed excellent insecticidal efficacy of 70% to 100% at their RC. In particular, flupyradifurone, emamectin benzoate, and cyantraniliprole showed high insecticidal efficacy of over 90% in all of the tested populations. Some insecticides that rapidly decreased in activity (less than 30%) at diluted concentrations or showed high resistance levels in nearby regions were classified for cautious use due to the possibility or potential to develop resistance. The results provide selected insecticides for B. tabaci control by region and could contribute to reducing insecticide abuse and increasing insecticidal efficiency in farming fields.

침입해충인 담배가루이(Bemisia tabaci Gennadius)의 12개 지역집단에 대하여 살충제 14종의 추천농도(RC, recommended concentration)와 추천농도의 10배(0.1RC), 100배(0.01RC) 희석농도에서의 살충력(mortality)을 엽침지법을 이용하여 조사하였다. Etofenprox, thiamethoxam, pyriproxyfen, pyridaben 등 4종을 제외한 대부분의 살충제들은 추천농도 (RC)에서 70%에서 100%의 우수한 살충력을 보였고, 특히 flupyradifurone, emamectin benzoate, cyantraniliprole은 모든 조사 지역에서 90% 이상의 높은 살충력을 보였다. 낮은 살충력을 보인 지역집단은 etofenprox의 경우 경기 광주(52%)와 안성(54%), 경남 창녕(46%), 전남 순천(64%)과 고흥(66%) 지역이었으며, thiamethoxam은 경기 광주(58%), 안성(37%), 충남 논산(58%), 경남 창녕(60%), 전북 완주(59%), 정읍(48%), 전남 순천(53%) 지역이었고, pyriproxyfen은 경기 안성(21%), 충남 논산(61%), 당진(61%), 경북 안동(56%), 경남 창녕(46%), 전북 정읍(40%) 지역 그리고, pyridaben은 충남 당진(61%)과 전북 정읍(65%) 지역이었다. 또한 희석농도에서 급격히 활성(30% 이하)이 낮아지거나 주변 지역에서 높은 저항성을 보이는 약제들은 저항성 발달 가능성이 높아 지역에 따라 주의가 필요한 약제로 분류하였다. 본 결과를 통하여 지역별 우수한 약제들을 선발할 수 있었으며 이들 약제반응 정보를 활용하면 영농현장에서 살충제의 남용은 줄고 담배가루이 방제효율이 증대될 것으로 기대된다.

Keywords

Acknowledgement

본 논문은 환경부의 재원으로 농촌진흥청의 생물다양성위협 외래생물관리기술개발사업(과제번호: RS-2021-RD009881)의 지원에 의해 이루어진 연구결과의 일부입니다.

References

  1. Abbott WS. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18:265-267. https://doi.org/10.1093/jee/18.2.265a
  2. Abd-Rabou S and AM Simmons. 2010. Survey of reproductive host plants of Bemisia tabaci (Hemiptera: Aleyrodidae) in Egypt, including new host records. Entomol. News 121:456-465. https://doi.org/10.3157/021.121.0507
  3. Ahmad M, MI Arif and M Naveed. 2010. Dynamics of resistance to organophosphate and carbamate insecticides in the cotton whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) from Pakistan. J. Pest Sci. 83:409-420. https://doi.org/10.1007/s10340-010-0311-8
  4. Chen W, DK Hasegawa, N Kaur, A Kilot, PV Pinheiro, J Luan, MC Stensmyr, Y Zheng, W Liu, H Sun, Y Xu, Y Luo, A Kruse, X Yang, S Kontsedalov, G Lebedev, TW Fisher, DR Nelson, WB Hunter, JK Brown, G Jander, M Cilia, AE Douglas, M Ghanim, AM Simmons, WM Wintermantel, KS Ling and Z Fei. 2016. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol. 14:110-124. https://doi.org/10.1186/s12915-016-0321-y
  5. Guo CL, IH Jeong, D Chu and YZ Zhu. 2022. First report of the invasion of Q2 subclade of Bemisia tabaci MED in South Korea as revealed by extensive field investigation. Phytoparasitica 50:91-100. https://doi.org/10.1007/s12600-021-00946-4
  6. Horowitz AR, S Kontsedalov, V Khasdan and I Ishaaya. 2005. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch. Insect Biochem. Physiol. 58:216-225. https://doi.org/10.1002/arch.20044
  7. IRAC. 2007. Resistance Management for Sustainable Agriculture and Improved Public Health. Insecticide Resistance Action Committee. CropLife International AISBL. Brussels, Belgium. p. 6.
  8. IRAC. 2023. Test Method Library. Insecticide Resistance Action Committee. https://irac-online.org/test-methods/test-method-library/. Accessed July 15, 2023.
  9. Jeon SW, B Park, SK Park, SK Lee, HJ Ryu, SB Lee and IH Jeong. 2017. Establishment of discriminating concentration based assessment for insecticide resistance monitoring of palm thrips. Korean J. Environ. Biol. 35:557-565. https://doi.org/10.11626/KJEB.2017.35.4.557
  10. Jeong IH, B Park, GS Lee, Q Wu, F Li, Z Zhang and Y Zhu. 2020. Comparison of B and Q biotype distribution, insecticidal mortality, and TYLCV viruliferous rate between Korean and Chinese local populations of Bemisia tabaci. Korean J. Environ. Biol. 38:616-624. https://doi.org/10.11626/KJEB.2020.38.4.616
  11. Kim S, SJ Kim, S Cho and SH Lee. 2021. Insecticide resistance monitoring of Bemisia tabaci (Hemiptera: Aleyrodide) in Korea. Korean J. Appl. Entomol. 60:167-173. https://doi.org/10.5656/KSAE.2020.12.0.082
  12. Lee ML, SB Ahn and WS Cho. 2000. Morphological characteristics of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and discrimination of their biotypes in Korea by DNA Markers. Korean J. Appl. Entomol. 39:5-12.
  13. Lee SW, SG Lee, JJ Kim, CK Park, HH Park, KH Kim and BY Choi. 2010. Neoniconoid resistance of Bemisia tabaci local populations and its clustering analysis. p. 63. In: Proceedings of Spring Symposium of The Korean Society of Pesticide Science. Yesan, Korea.
  14. Lee W and GS Lee. 2017. Reassessment of the taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) based on mitochondrial COI gene sequences. Korean J. Appl. Entomol. 52:107-120. https://doi.org/10.5656/KSAE.2016.11.0.076
  15. Lee W, J Park, GS Lee, S Lee and S Akimoto. 2013. Taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) and reassessment of the number of its constituent species. PLoS One 8:e63817. https://doi.org/10.1371/journal.pone.0063817
  16. Luo C, CM Jones, G Devine, F Zhang, I Denholm and K Gorman. 2010. Insecticide resistance in Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China. Crop Prot. 29:429-434. https://doi.org/10.1016/j.cropro.2009.10.001
  17. Nauen R, N Stunpf and A Elbert. 2002. Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera : Aleyrodidae). Pest Manag. Sci. 58:868-875. https://doi.org/10.1002/ps.557
  18. Navas-Castillo J, E Fiallo-Olive and S Sanchez-Campos. 2011. Emerging virus diseases transmitted by whiteflies. Annu. Rev. Phytopathol. 49:219-248. https://doi.org/10.1146/annurevphyto-072910-095235
  19. Perring TM. 2001. The Bemisia tabaci species complex. Crop Prot. 20:725-737. https://doi.org/10.1016/S0261-2194(01)00109-0
  20. RDA. 2021. Criteria for registion of pesticides and active substances attach 3. pp. 228-241. In: Pesticide Control Act, Notices and Instructions (RDA Agro-Material Industry Division, eds.). Rural Development Administration. Jeonju, Korea.
  21. RDA. 2023. Pesticide Safety Information System. Rural Development Administration. https://psis.rda.go.kr/psis/index.ps. Accessed July 15, 2023.
  22. Roush RT and GL Miller. 1986. Considerations for design of insecticide resistance monitoring programs. J. Econ. Entomol. 79:293-298. https://doi.org/10.1093/jee/79.2.293
  23. Sparks TC and R Nauen. 2015. IRAC: Mode of action classification and insecticide resistance management. Pest. Biochem. Physiol. 121:122-128. https://doi.org/10.1016/j.pestbp.2014.11.014
  24. Stanley BH. 2014. Monitoring resistance. pp. 485-513. In: Insecticide Resistance Management. Biology, Economics, and Prediction (Onstad DW, ed.). Second Edition. Academic Press. London, United Kingdom.
  25. Wang R, JD Wang, WN Che and C Luo. 2018. First report of field resistance to cyantraniliprole, a new anthranilic diamide insecticide, on Bemisia tabaci MED in China. J. Interg. Agric. 17:158-163. https://doi.org/10.1016/S2095-3119(16)61613-1
  26. Wang R, W Che, J Wang and C Luo. 2020. Motoring insecticide resistance and diagnostic of resistance mechanisms Bemisia tabaci Mediterranean (Q bitotype) in China. Pestic. Biochem. Physiol. 163:117-122. https://doi.org/10.1016/j.pestbp.2019.11.003