DOI QR코드

DOI QR Code

Estimation of potential distribution of sweet potato weevil (Cylas formicarius) and climate change impact using MaxEnt

MaxEnt를 활용한 개미바구미(Cylas formicarius)의 잠재 분포와 기후변화 영향 모의

  • Jinsol Hong (Ojeong Resilience Institute, Korea University) ;
  • Heewon Hong (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Sumin Pi (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Soohyun Lee (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Jae Ha Shin (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Yongeun Kim (Ojeong Resilience Institute, Korea University) ;
  • Kijong Cho (Ojeong Resilience Institute, Korea University)
  • 홍진솔 (고려대학교 오정리질리언스연구원) ;
  • 홍희원 (고려대학교 환경생태공학과) ;
  • 피수민 (고려대학교 환경생태공학과) ;
  • 이수현 (고려대학교 환경생태공학과) ;
  • 신재하 (고려대학교 환경생태공학과) ;
  • 김용은 (고려대학교 오정리질리언스연구원) ;
  • 조기종 (고려대학교 오정리질리언스연구원)
  • Received : 2023.12.01
  • Accepted : 2023.12.22
  • Published : 2023.12.31

Abstract

The key to invasive pest management lies in preemptive action. However, most current research using species distribution models is conducted after an invasion has occurred. This study modeled the potential distribution of the globally notorious sweet potato pest, the sweet potato weevil(Cylas formicarius), that has not yet invaded Korea using MaxEnt. Using global occurrence data, bioclimatic variables, and topsoil characteristics, MaxEnt showed high explanatory power as both the training and test areas under the curve exceeded 0.9. Among the environmental variables used in this study, minimum temperature in the coldest month (BIO06), precipitation in the driest month (BIO14), mean diurnal range (BIO02), and bulk density (BDOD) were identified as key variables. The predicted global distribution showed high values in most countries where the species is currently present, with a significant potential invasion risk in most South American countries where C. formicarius is not yet present. In Korea, Jeju Island and the southwestern coasts of Jeollanam-do showed very high probabilities. The impact of climate change under shared socioeconomic pathway (SSP) scenarios indicated an expansion along coasts as climate change progresses. By applying the 10th percentile minimum training presence rule, the potential area of occurrence was estimated at 1,439 km2 under current climate conditions and could expand up to 9,485 km2 under the SSP585 scenario. However, the model predicted that an inland invasion would not be serious. The results of this study suggest a need to focus on the risk of invasion in islands and coastal areas.

침입생물 관리의 핵심은 선제적 대응에 있으나, 현재 종분포 모형을 활용한 연구는 대부분 침입 이후에 수행되는 실정이다. 본 연구는 아직 국내에 침입하지 못한 전 세계적으로 악명 높은 고구마 해충, 개미바구미(Cylas formicarius)의 잠재 분포를 MaxEnt 모형을 활용해 모의했다. 전지구 수준의 출현 자료와 생물기후변수, 표토의 특성과 관한 변수들을 활용해 모형을 구축한 결과, Training/Test AUC 모두 0.9 이상으로 매우 설명력이 높았다. 활용한 환경변수들 중에서는 가장 추운 달의 최저온도(BIO06), 가장 건조한 달의 강수량(BIO14), 평균 일교차(BIO02), 전용적밀도(bulk density, BDOD)가 주요한 변수로 분석되었다. 전지구 분포 예측 결과, 대부분의 출현 국가들에서 높은 예측 값을 보였으며, 남미의 경우 현재 분포하지 않은 대부분의 국가에서 높은 출현확률을 보여 잠재적 침입 위험이 큰 것으로 분석되었다. 국내 잠재 분포를 예측한 결과, 제주도와 전남 남서해안지역의 잠재 분포 확률이 매우 높았다. SSP (Shared Socioeconomic Pathway) 시나리오에 대한 기후변화 영향을 분석한 결과, 잠재 분포는 전국 해안을 따라 확장되었다. 잠재적인 발생 면적의 경우 10MTP (10th percentile minimum training presence) 규칙 적용시 현재 기후하에서 1,439 km2였으며 SSP585에서 최대 9,485 km2까지 확대될 가능성이 있을 것으로 예측되었다. 그러나, 내륙지방으로의 전국적 분포는 예측되지 않아 전국 도서·해안지역의 침입 위험을 중심적으로 대비해야 할 것으로 사료된다.

Keywords

Acknowledgement

This research was supported by Korea Environment Industry & Technology Institute (KEITI) through Climate Change R&D Project for New Climate Regime (2022003570005), funded by Korea Ministry of Environment (MOE). This research was also supported by Core Research Institute Basic Science Research Program through the NRF funded by the Ministry of Education (NRF-2021R1A6A1A10045235).

References

  1. APQA. 2021. Import Quarantine Trends of Lemongrass from Thailand. Animal and Plant Quarantine Agency. Gimcheon, Korea. https://www.qia.go.kr/downloadwebQiaCom.do?id=39694. Accessed November 30, 2023.
  2. Austin DF. 1988. The taxonomy, evolution and genetic diversity of sweet potatoes and related wild species. pp. 27-60. In: Exploration, Maintenance, and Utilization of Sweet Potato Genetic Resources. International Potato Center. Lima, Peru.
  3. Bivand R, T Keitt and B Rowlingson. 2023. rgdal: bindings for the 'Geospatial' Data Abstraction Library. R package version 1.6-7. https://CRAN.R-project.org/package=rgdal. Accessed November 20, 2023.
  4. Bradshaw CJ, L Boris, C Bellard, D Roiz, C Albert, A Fournier, M Barbet-Massin, JM Salles, F Simard and F Courchamp. 2016. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7:12986. https://doi.org/10.1038/ncomms12986
  5. CABI. 2023. Cylas formicarius. In: CABI Compendium. Wallingford, United Kingdom: CAB International. https://doi.org/10.1079/cabicompendium.17408. Accessed November 1, 2023.
  6. Chatterjee S and AS Hadi. 2013. Regression analysis by example. Fifth Edition. John Wiley & Sons. Hoboken, New Jersey.
  7. Elith J and JR Leathwick. 2009. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40:677-697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
  8. GBIF. 2023. Global Biodiversity Information Facility. Occurrence Download. https://doi.org/10.15468/dl.hm3yu3. Accessed November 20, 2023.
  9. Hijmans R. 2023. raster: Geographic Data Analysis and Modeling. R package version 3.6-23. https://CRAN.R-project.org/package=raster. Accessed November 20, 2023.
  10. Hong J, GS Lee, JJ Park, HH Mo and K Cho. 2019. Risk map for the range expansion of Thrips palmi in Korea under climate change: Combining species distribution models with land-use change. J. Asia-Pac. Entomol. 22:666-674. https://doi.org/10.1016/j.aspen.2019.04.013
  11. Hong KJ, JH Lee, GS Lee and S Lee. 2012. The status quo of invasive alien insect species and plant quarantine in Korea. J AsiaPac. Entomol. 15:521-532. https://doi.org/10.1016/j.aspen.2012.06.003
  12. Hue SM and MY Low. 2015. An insight into sweet potato weevils management: A review. Psyche-J. Entomol. 2015:849560. https://doi.org/10.1155/2015/849560
  13. IPBES. 2023. Summary for Policymakers of the Thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (Roy HE, A Pauchard, P Stoett, T Renard Truong, S Bacher, BS Galil, PE Hulme, T Ikeda, KV Sankaran, MA McGeoch, LA Meyerson, MA Nunez, A Ordonez, SJ Rahlao, E Schwindt, H Seebens, AW Sheppard and V Vandvik, eds.). Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services secretariat. Bonn, Germany. https://doi.org/10.5281/zenodo.7430692
  14. JATC. 2016. 60 Years of Rural Development in Jeju. Jeju Special Self-Governing Province Agricultural Technology Center. Seogwipo, Korea.
  15. Jayaramaiah M. 1975. Bionomics of sweetpotato weevil, Cylas formicarius (Fabricius), (Coleoptera: Curculionidae). Mysore J. Agric. Sci. 9:99-109.
  16. Jo SJ. 2014. Study on the control and ecology of Pochazia shantungensis. J. Tree Health 19:35-44.
  17. Kandori I, T Kimura, H Tsumuki and T Sugimoto. 2006. Cold tolerance of the sweet potato weevil, Cylas formicarius (Fabricius) (Coleoptera: Brentidae), from the Southwestern Islands of Japan. Appl. Entomol. Zoolog. 41:217-226. https://doi.org/10.1303/aez.2006.217
  18. Karger DN, AM Wilson, C Mahony, NE Zimmermann and W Jetz. 2021. Global daily 1 km land surface precipitation based on cloud cover-informed downscaling. Sci. Data https://doi.org/10.1038/s41597-021-01084-6
  19. Khoury CK, B Heider, NP Castaneda-Alvarez, HA Achicanoy, CC Sosa, RE Miller, RW Scotland, JRI Wood, G Rossel, LA Eserman, RL Jarret, GC Yencho, V Bernau, H Juarez, S Sotelo, S de Haam and PC Struik. 2015. Distributions, ex situ conservation priorities, and genetic resource potential of crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas]. Front. Plant Sci. 6:251. https://doi.org/10.3389/fpls.2015.00251
  20. Kim DE, H Lee, MJ Kim and DH Lee. 2015. Predicting the potential habitat, host plants, and geographical distribution of Pochazia shantungensis (Hemiptera: Ricaniidae) in Korea. Korean J. Appl. Entomol. 54:179-189. https://doi.org/10.5656/KSAE.2015.06.0.011
  21. Kim MJ, JG Lee, Y Nam and Y Park. 2023. Assessing the climatic suitability for the drywood termite, Cryptotermes domesticus Haviland (Blattodea: Kalotermitidae), in South Korea. Korean J. Appl. Entomol. 62:215-220. https://doi.org/10.5656/KSAE.2023.08.0.026
  22. KOSIS. 2023a. Crop Production Survey - Potatoes Production (Field). Korean Statistical Information Service. https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0026&conn_path=I2&language=en. Accessed December 30, 2023.
  23. KOSIS. 2023b. Census of Agriculture, Forestry, and Fisheries - Farm Households and Harvest Area of Sweet Potato. Korean Statistical Information Service. https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1AG204026&conn_path=I2. Accessed December 30, 2023.
  24. Kyereko WT, Z Hongbo, H Amoanimaa-Dede, G Meiwei and A Yeboah. 2019. The major sweet potato weevils; management and control: A review. Entomol. Ornithol. Herpetol. 8:218. https://doi.org/10.35248/2161-0983.8.218
  25. Lee HS and SW Wilson. 2010. First report of the nearctic flatid planthopper Metcalfa pruinosa (Say) in the Republic of Korea (Hemiptera: Fulgoroidea). Entomol. News 121:506-513. https://doi.org/10.3157/021.121.0514
  26. Lee S, KJ Hong, YS Cho, YS Choi, MS Yoo and S Lee. 2017. Review of the subgenus Aethina Erichson s. str. (Coleoptera: Nitidulidae: Nitidulinae) in Korea, reporting recent invasion of small hive beetle, Aethina tumida. J Asia-Pac. Entomol. 20:553-558. https://doi.org/10.1016/j.aspen.2017.03.006
  27. Miyatake T, S Moriya, T Kohama and Y Shimoji. 1997. Dispersal potential of male Cylas formicarius (Coleoptera: Brentidae) over land and water. Environ. Entomol. 26:272-276. https://doi.org/10.1093/ee/26.2.272
  28. Miyatake T, T Kohama, Y Shimoji, K Kawasaki, S Moriya, M Kishita and K Yamamura. 2000. Dispersal of released male sweetpotato weevil, Cylas formicarius (Coleoptera: Brentidae) in different seasons. Appl. Entomol. Zoolog. 35:441-449. https://doi.org/10.1303/aez.2000.441
  29. Muruvanda DA, JW Beardsley and WC Mitchell. 1986. Additional alternate hosts of the sweetpotato weevils Cylas formicarius elegantulus and Euscepes postfasciatus (Coleoptera: Curculionidae) in Hawaii. Proc. Hawaiian Entomol. Soc. 26:93-96.
  30. Naimi B, NAS Hamm, TA Groen, AK Skidmore and AG Toxopeus. 2014. Where is positional uncertainty a problem for species distribution modelling. Ecography 37:191-203. https://doi.org/10.1111/j.1600-0587.2013.00205.x
  31. O'Neill BC, C Tebaldi, D van Vuuren, V Eyring, P Friedlingstein, G Hurtt, R Knutti, E Kriegler, JF Lamarque, J Lowe, GA Meehl, R Moss, K Riahi and BM Sanderson. 2016. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9:3461-3482. https://doi.org/10.5194/gmd-9-3461-2016
  32. Phillips SJ and M Dudik. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  33. Phillips SJ, RP Anderson and RE Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190:231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  34. Phillips SJ, RP Anderson, M Dudik, RE Schapire and ME Blair. 2017. Opening the black box: An open-source release of Maxent. Ecography 40:887-893. https://doi.org/10.1111/ecog.03049
  35. Poggio L, LM de Sousa, NH Batjes, G Heuvelink, B Kempen, E Ribeiro and D Rossiter. 2021. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil 7:217-240. https://doi.org/10.5194/soil-7-217-2021
  36. R Core Team. 2023. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed November 1, 2023.
  37. RDA. 2018. Sweet Potato - Agricultural Technology Guide 028. Rural Development Administration. Jeonju, Korea.
  38. Rounsevell MDA, SP Evans and P Bullock. 1999. Climate change and agricultural soils: impacts and adaptation. Clim. Change 43:683-709. https://doi.org/10.1023/A:1005597216804
  39. Sato K, I Uritani and T Saito. 1982. Properties of terpene-inducing factor extracted from adults of the sweet potato weevil, Cylas formicarius Fabricius (Coleoptera: Brenthidae). Appl. Entomol. Zoolog. 17:368-374. https://doi.org/10.1303/aez.17.368
  40. Shin HP, CI Park and KS Jeong. 1989. Report on the first interception of Cylas formicarius Fabricius (Coleoptera: Curculionidae) in quarantine. Korean J. Appl. Entomol. 28:244.
  41. Sutherland JA. 1986. A review of the biology and control of the sweetpotato weevil Cylas formicarius (Fab). Int. J. Pest Manage. 32:304-315. https://doi.org/10.1080/09670878609371084
  42. Swets JA. 1988. Measuring the accuracy of diagnostic systems. Science 240:1285-1293. https://doi.org/10.1126/science.3287615
  43. Wolfe GW. 1991. The origin and dispersal of the pest species of Cylas with a key to the pest species groups of the world. pp. 13-43. In: Sweet Potato Pest Management. A Global Perspective (Jansson RK and KV Raman eds.). Westview Press. Boulder, Colorado.
  44. Yamaguchi T, O Setokuchi and K Miyaji. 2000. Development and adult survival of the sweet potato weevil, Cylas formicarius (Fabricius) (Coleoptera: Brentidae), during winter on AmamiOshima Island, Japan. Appl. Entomol. Zool. 35:451-458.  https://doi.org/10.1303/aez.2000.451