DOI QR코드

DOI QR Code

Changes in forest fire fuel amount in a Chamaecyparis obtusa forest according to stand density control

편백림 임분밀도 조절에 따른 유기물층의 산불 연료량 변화

  • Du-Hee Lee (Department of Forest Resources, Chonnam National University) ;
  • Jeong-Gwan Lee (Department of Forest Resources, Chonnam National University) ;
  • Han Doo Shin (Department of Forest Resources, Chonnam National University) ;
  • Sle-Gee Lee (Department of Forest Landscape Architecture, Sangji University) ;
  • Woo Jin Park (Department of Forest Environmental Science, Chonbuk National University) ;
  • Hyun-Jun Kim (Department of Forest Resources, Chonnam National University)
  • 이두희 (전남대학교 산림자원학과) ;
  • 이정관 (전남대학교 산림자원학과) ;
  • 신한두 (전남대학교 산림자원학과) ;
  • 이슬기 (상지대학교 조경산림학과) ;
  • 박우진 (전북대학교 산림환경과학과) ;
  • 김현준 (전남대학교 산림자원학과)
  • Received : 2023.08.28
  • Accepted : 2023.11.27
  • Published : 2023.12.31

Abstract

This study was conducted to analyze the effects of stand density on fire fuel (FF) changes in a Chamaecyparis obtusa forest. The study site was located in Mt. Munsu in Jeollabuk-do and consisted of a control, 30% thinning treatment(LT), and 50% thinning treatment(HT). Three-year-old seedlings were planted at a density of 3,000trees ha-1 in 1976, and thinning was carried out in 2000. FF production was measured every 2 months by installing 3 circular litter traps 1.2m above the ground. Litter bags containing 5g of each leaf and branch were made and buried in the organic layer to investigate the FF decomposition rate. The decay constant was calculated after 18 months. FF accumulation was measured by collecting dry-weight organic matter from each plot using a square frame (0.09 m2) in September 2018. The FF production in LT and HT was significantly lower than that of the control(P<0.001). The leaf decay constant for HT was significantly lower than that of the control (P<0.05). The FF accumulation in HT was significantly lower than that of the control (P<0.01), but LT was not significantly different from the control. The results of this study showed that thinning decreased FF production.

본 연구는 편백림에서 임분밀도 조절이 산불 연료량에 미치는 효과를 분석하고자 수행하였다. 본 연구의 대상지는 전북 고창군 문수산에 위치해 있으며, 대조구, 30% 간벌처리구(light thinning, LT), 50% 간벌처리구(heavy thinning, HT)로 이루어져 있다. 1976년에 3년생 묘목을 3,000본 ha-1 기준으로 식재하였으며, 2000년에 간벌을 실시하였다. 산불연료 생산량은 지면으로부터 1.2 m 높이의 원형 littertrap을 시험구별 3개씩 설치하여 2019년 4월부터 2020년 12월까지 2개월 간격으로 낙엽낙지량을 측정하였다. 산불연료 분해량을 알아보기 위해서 낙엽과 낙지를 5 g씩 넣은 낙엽망을 제작하여 유기물층에 묻은 후 18개월 후에 수거하여 분해상수를 구하였다. 산불연료 축적량은 정방향틀(0.09 m2)을 이용하여 2018년 9월에 시험구별 3반복으로 채취한 유기물의 건중량을 측정하였다. 산불연료 생산량은 LT와 HT 처리구 모두 대조구보다 통계적으로 유의한 수준으로 감소하였다(P<0.001). HT의 잎 분해상수는 대조구보다 유의하게 낮게 나타났다(P<0.05). LT의 산불연료 축적량은 대조구와 유의한 차이를 보이지 않았지만, HT의 산불연료 축적량은 대조구보다 유의하게 낮았다(P<0.01). 본 연구의 결과를 종합적으로 살펴보면 산불연료량은 간벌에 의해 감소하였다. 따라서 간벌을 통한 산림관리를 통해 연소물질이 감소되면 산불의 강도가 억제되어 산불을 빨리 진압해 대형산불의 저감효과를 기대할 수 있다.

Keywords

Acknowledgement

본 연구는 한국연구재단(NRF-2018RIDIAIB07042483) 및 산림청(2022464B10-2224-0201)의 지원을 받아 수행되었습니다.

References

  1. Agee JK and CN Skinner. 2005. Basic principles of forest fuel reduction treatments. For. Ecol. Manage. 211:83-96. https://doi.org/10.1016/j.foreco.2005.01.034
  2. Ambrey CL, CM Fleming and M Manning. 2017. Forest fire danger, life satisfaction and feelings of safety: evidence from Australia. Int. J. Wildland Fire. 26:240-248. https://doi.org/10.1071/WF16195
  3. Berg B. 2000. Litter decomposition and organic matter turnover in northern forest soils. For. Ecol. Manage. 133:13-22. https://doi.org/10.1016/S0378-1127(99)00294-7
  4. Berg B and V Meentemeyer. 2001. Litter fall in some European coniferous forests as dependent on climate: a synthesis. Can. J. For. Res. 31:292-301. https://doi.org/10.1139/x00-172
  5. Bravo-Oviedo A, R Ruiz-Peinado, R Onrubia and M del Rio. 2017. Thinning alters the early-decomposition rate and nutrient immobilization-release pattern of foliar litter in Mediterranean oak-pine mixed stands. For. Ecol. Manage. 391:309-320. https://doi.org/10.1016/j.foreco.2017.02.032
  6. Castin-Buchet V and P Andre. 1998. The influence of intensive thinning on earthworm populations in the litters of Norway spruce and Douglas fir. Pedobiologia 42:63.
  7. Crecente-Campo F, A Pommerening and R Rodriguez-Soalleiro. 2009. Impacts of thinning on structure, growth and risk of crown fire in a Pinus sylvestris L. plantation in northern Spain. For. Ecol. Manage. 257:1945-1954. https://doi.org/10.1016/j.foreco.2009.02.009
  8. Finney MA, RC Seli, CW McHugh, AA Ager, B Bahro and JK Age. 2007. Simulation of long-term landscape-level fuel treatment effects on large wildfires. Int. J. Wildland Fire. 16:712-727. https://doi.org/10.1071/WF06064
  9. Hennessey TC, PM Dougherty, BM Cregg and RF Wittwer. 1992. Annual variation in needle fall of a loblolly pine stand in relation to climate and stand density. For. Ecol. Manage. 51:329-338. https://doi.org/10.1016/0378-1127(92)90332-4
  10. Inagaki Y, S Kuramoto, A Torii, Y Shinomiya and H Fukata. 2008. Effects of thinning on leaf-fall and leaf-litter nitrogen concentration in hinoki cypress (Chamaecyparis obtusa Endlicher) plantation stands in Japan. For. Ecol. Manage. 255:1859-1867. https://doi.org/10.1016/j.foreco.2007.12.007
  11. Johnston JD, JH Olszewski, BA Miller, MR Schmidt, MJ Vernon and LM Ellsworth. 2021. Mechanical thinning without prescribed fire moderates wildfire behavior in an Eastern Oregon, USA ponderosa pine forest. For. Ecol. Manage. 501:119674. https://doi.org/10.1016/j.foreco.2021.119674
  12. Keane RE. 2008. Biophysical controls on surface fuel litterfall and decomposition in the northern Rocky Mountains, USA. Can. J. For. Res. 38:431-1445. https://doi.org/10.1139/X08-00
  13. Kim S, B Lee, Y Seo, M Jang and YJ Lee. 2011. Effects of forest tending works on the crown fuel characteristics of Pinus densiflora S. et Z. stands in Korea. J. Korean Soc. For. Sci. 100:359-366. https://doi.org/10.14578/jkfs.2011.100.3.6
  14. Korea Forest Service. 2021. Afforestation Business Performance Report. Korea Forest Service. Daejeon, Korea.
  15. Korea Forest Service. 2022. 2021 Forest Fire Statistical Yearbook. Korea Forest Service. Daejeon, Korea. pp. 128-143.
  16. Korea Meteorological Association. 2022. Climatological Normals of Korea. Korea Meteorological Association. www.kma.go.kr. Accessed September 29, 2022.
  17. Kunhamu TK, BM Kumar and S Viswanath. 2009. Does thinning affect litterfall, litter decomposition, and associated nutrient release in Acacia mangium stands of Kerala in peninsular India. Can. J. For. Res. 39:792-801. https://doi.org/10.1139/X09-008
  18. Lee JG, DH Lee, JY Jung, SG Lee, SH Han, S Kim and HJ Kim. 2023. The effects of stand density control on carbon cycle in Chamaecyparis obtusa (Siebold and Zucc.) Endl. Forests. Forests 14:217. https://doi.org/10.3390/f14020217
  19. Lee SJ, SY Kim, SH Ha, YE Lee, KW Seo and CG Kwon. 2021. Effect of climate factors on fuel moisture contents in forest - A case study on Pinus densiflora stands in Hongreung Forest -. Crisisonomy 17:89-97. https://doi.org/10.14251/crisisonomy.2021.17.6.89
  20. Lee SY and MW Lee. 2007. Comparative analysis of forest fire danger rating on the forest characteristic of thinning area and non-thinning area. Fire Sci. Eng. 21:52-58.
  21. Lee YE, SJ Lee, CG Kwon, KW Seo, CA Bang and SY Kim. 2020. The effects of thinning slash on wildfire fuel type. Crisisonomy 16:61-69. https://doi.org/10.14251/crisisonomy.2020.16.10.61
  22. Lim CJ and H Chae. 2022. Predicting forest fire danger using fuel characteristics of forest. J. Korean Soc. Hazard Mitig. 22:125-132. https://doi.org/10.9798/KOSHAM.2022.22.6.125
  23. Miller C and DL Urban. 2000. Connectivity of forest fuels and surface fire regimes. Landsc. Ecol. 15:145-154. https://doi.org/10.1023/A:1008181313360
  24. Olson JS. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322-331. https://doi.org/10.2307/1932179
  25. Pollet J and PN Omi. 2002. Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests. Int. J. Wildland Fire. 11:1-10. https://doi.org/10.1071/WF01045
  26. Pyne SJ, PL Andrews and RD Laven. 1996. Introduction to Wildland Fire. John Wiley & Sons. New York.
  27. Reid CE, M Brauer, FH Johnston, M Jerrett, JR Balmes and CT Elliott. 2016. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 124:1334-1343. https://doi.org/10.1289/ehp.1409277
  28. Rothermel RC. 1972. A Mathematical Model for Predicting Fire Spread in Wildland Fuels. Research Paper INT-115. Intermountain Forest and Range Experiment Station, United States Department of Agriculture. Ogden, Utah.
  29. Rothermel RC. 1991. Predicting Behavior and Size of Crown Fires in the Northern Rocky Mountains. INT-438. Intermountain Forest and Range Experiment Station, United States Department of Agriculture. Ogden, Utah.
  30. Siemon GR, GB Wood and WG Forrest. 1976. Effects of thinning on crown structure in radiata pine. N. Z. J. For. Sci. 6:57-66.
  31. Turnbull CRA and JL Madden. 1983. Relationship of litterfall to basal area and climatic variables in cool temperate forests of southern Tasmania. Aust. J. Ecol. 8:425-431. https://doi.org/10.1111/j.1442-9993.1983.tb01339.x
  32. Wehmeyer A. 1999. Records of wind and earth: A translation of Fudoki, with introduction and commentaries. Monum. Nippon. 54:138-140. https://doi.org/10.2307/2668282
  33. Xu XN and E Hirata. 2002. Forest floor mass and litterfall in Pinus luchuensis plantations with and without broad-leaved trees. For. Ecol. Manage. 157:165-173. https://doi.org/10.1016/S0378-1127(00)00663-0
  34. Zhang X, D Guan, W Li, D Sun, C Jin, F Yuan, A Wang and J Wu. 2018. The effects of forest thinning on soil carbon stocks and dynamics: A meta-analysis. For. Ecol. Manage. 429:36-43. https://doi.org/10.1016/j.foreco.2018.06.027