DOI QR코드

DOI QR Code

미역(Undaria pinnatifida) 배우체의 생존 및 상대성장률을 이용한 dichlofluanid의 독성영향 평가

Assessment of the toxic effects of dichlofluanid using survival and relative growth rate on brown alga Undaria pinnatifida

  • 황운기 (국립수산과학원 기후환경연구부 갯벌연구센터) ;
  • 박윤호 (국립환경과학원 환경건강연구부 위해성평가연구과) ;
  • 심보람 (국립수산과학원 서해수산연구소 기후환경자원과) ;
  • 이주욱 (국립수산과학원 서해수산연구소 기후환경자원과)
  • Un-Ki Hwang (Tidal Flat Research Center, NIFS) ;
  • Yun-Ho Park (Risk Assessment Division, Environmental Health Research Department, NIER) ;
  • Bo-Ram Sim (West Sea Fisheries Research Institute, NIFS) ;
  • Ju-Wook Lee (West Sea Fisheries Research Institute, NIFS)
  • 투고 : 2023.09.19
  • 심사 : 2023.11.08
  • 발행 : 2023.12.31

초록

Dichlofluanid는 해양환경 내 빠르게 분해되지만 농약 및 방오제로 사용되고 퇴적물에 쉽게 축적되어 지속적으로 해양환경으로 유입되고 있다. Dichlofluanid는 다양한 해양생물에게 독성영향을 미치는 것으로 알려져 있지만 해조류에 대한 독성연구는 충분히 보고되지 않았다. 따라서 우리나라의 주요 양식생물인 미역(Undaria pinnatifida) 암배우체의 생존율 및 상대성장률을 이용하여 dichlofluanid의 독성영향을 분석하였다. U. pinnatifida의 암배우체를 dichlofluanid (0, 1, 2, 4, 8, 16, 32 mg L-1)에 노출하였고 암배우체 생존율의 무영향농도(NOEC), 최소영향농도(LOEC), 반수치사농도(LC50)는 1, 2, 10.82(8.87~13.23) mg L-1, 상대성장률의 NOEC, LOEC, 반수영향농도(EC50)은 1, 2, 6.58 (6.03~7.17) mg L-1로 분석되었다. 본 연구결과는 dichlofluanid에 대한 U. pinnatifida 암배우체의 독성영향을 평가하기 위한 중요한 참고자료로 활용될 것으로 기대된다.

Biocide dichlofluanid breaks down quickly and accumulates easily in sediment, potentially causing a persistent impact on various marine organisms. We analyzed the potential toxicity of dichlofluanid on major aquaculture species in Korea, Undaria pinnatifida. Female gametophytes of U. pinnatifida were exposed to dichlofluanid at concentrations of 0, 1, 2, 4, 8, 16, and 32 mg L-1, and their survival and relative growth rate were analyzed. The no observed effect concentration(NOEC), lowest observed effect concentration (LOEC), and median lethal concentration (LC50) for female gametophyte survival were determined as 1, 2, and 10.82 (95% CI: 8.87-13.23) mg L-1, respectively. The NOEC, LOEC, and median effective concentration (EC50) for relative growth rate were 1, 2, and 6.58 (95% CI: 6.03-7.17) mg L-1, respectively. Female gametophytes of U. pinnatifida were expected to experience toxic effects at concentrations above 2 mg L-1 of dichlofluanid. These research findings are expected to serve as important reference data for evaluating the toxicity effects of U. pinnatifida in its early life stages when exposed to dichlofluanid.

키워드

과제정보

본 연구는 2023년 국립수산과학원 갯벌연구센터(R2023027)의 연구비 지원으로 수행되었다.

참고문헌

  1. Abreu FEL, JNL da Silva, IB Castro and G Fillmann. 2020. Are antifouling residues a matter of concern in the largest South American port? J. Hazard. Mater. 398:122937. https://doi.org/10.1016/j.jhazmat.2020.122937
  2. Almeida JC, IB Castro, BZ Nunes and E Zanardi-Lamardo. 2023. Antifouling booster biocides in Latin America and the Caribbean: A 20-year review. Mar. Pollut. Bull. 189:114718. https://doi.org/10.1016/j.marpolbul.2023.114718
  3. Amara I, W Miled, RB Slama and N Ladhari. 2018. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environ. Toxicol. Pharmacol. 57:115-130. https://doi.org/10.1016/j.etap.2017.12.001
  4. Axelsson L, JM Mercado and FL Figueroa. 2000 Utilization of HCO3- at high pH by the brown macroalga Laminaria saccharina. Eur. J. Phycol. 35:53-59. https://doi.org/10.1080/09670260010001735621
  5. Bao VWW, KMY Leung, JW Qiu and MHW Lam. 2011. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Mar. Pollut. Bull. 62:1147-1151. https://doi.org/10.1016/j.marpolbul.2011.02.041
  6. Batucan NS, LA Tremblay, GL Northcott and CD Matthaei. 2022. Medicating the environment? A critical review on the risks of carbamazepine, diclofenac and ibuprofen to aquatic organisms. Environ. Adv. 7:100164. https://doi.org/10.1016/j.envadv.2021.100164
  7. Bellas J. 2006. Comparative toxicity of alternative antifouling biocides on embryos and larvae of marine invertebrates. Sci. Total Environ. 367:573-585. https://doi.org/10.1016/j.scitotenv.2006.01.028
  8. Cai Y, JT Koning, K Bester and UE Bollmann. 2021. Abiotic fate of tolylfluanid and dichlofluanid in natural waters. Sci. Total Environ. 752:142160. https://doi.org/10.1016/j.scitotenv.2020.142160
  9. Campos BG, LB Moreira, GFE Pauly, ACF Cruz, FC Perina, G Abreu, G Fillmann and DMS Abessa. 2023. Water and sediment toxicity and hazard assessment of DCOIT towards neotropical marine organisms. Envrion. Pollut. 330:121797. https://doi.org/10.1016/j.envpol.2023.121797
  10. Chen L, Y Xu, W Wang and PY Qian. 2015. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions. Chemosphere 119:1075-1083. https://doi.org/10.1016/j.chemosphere.2014.09.056
  11. Cima F and R Varello. 2020. Immunotoxicity in Ascidians: Antifouling compounds alternative to organotins-V. the case of dichlofluanid. J. Mar. Sci. Eng. 8:396. https://doi.org/10.3390/jmse8060396
  12. Daehne D, C Furle, A Thomsen, B Watermann and M Feibicke. 2017. Antifouling biocides in German marinas: Exposure assessment and calculation of national consumption and emission. Integr. Environ. Assess. Manag. 13:892-905. https://doi.org/10.1002/ieam.1896
  13. Deng X, K Gao and J Sun. 2012. Physiological and biochemical responses of Synechococcus sp. PCC7942 to irgarol and diuron. Aquat. Toxicol. 122-123:113-119. https://doi.org/10.1016/j.aquatox.2012.06.004
  14. Fernandez -Alba AR, MD Hernando, L Piedra and Y Chisti. 2002. Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Anal. Chim. Acta 456:303-312. https://doi.org/10.1016/S0003-2670(02)00037-5
  15. Hamwijk C, A Schouten, EM Foekema, JC Ravensberg, MT Collombon, K Schmidt and M Kugler. 2005. Monitoring of the booster biocide dichlofluanid in water and marine sediment of Greek marinas. Chemosphere 60:1316-1324. https://doi.org/10.1016/j.chemosphere.2005.01.072
  16. Heo S, JW Lee, H Choi, SJ Yoon, KY Kwon, UK Hwang and YH Park. 2021. Toxic effect of chlorothalonil, an antifouling agent, on survival and population growth rate of a marine rotifer, Brachionus plicatilis. Korean J. Environ. Biol. 39:390-398. https://doi.org/10.11626/KJEB.2021.39.3.390
  17. Jepson PD, R Deaville, JL Barber, A Aguilar, A Borrell, S Murphy, J Barry, A Brownlow, J Barnett, S Berrow, AA Cunningham, NJ Davison, M etn Doeschate, R Esteban, M Ferreira, AD Foote, T Genov, J Gimenez, J Loveridge, A Llavona, V Martin, DL Maxwell, A Papachlimitzou, R Penros, MW perkins, B smith, R de Stephanis, N Tregenza, P Verborgh, A Fernandez and RJ Law. 2016. PCB pollution continues to impact populations of orcas and other dolphins in European waters. Sci. Rep. 6:18573. https://doi.org/10.1038/srep18573
  18. Johansson P, KM Eriksson, L Axelesson and H Blanck. 2012. Effects of seven antifouling compounds on photosynthesis and inorganic carbon use in sugar kelp Saccharina latissima (Linnaeus). Arch. Environ. Cantam. Toxicol. 63:365-377. https://doi.org/10.1007/s00244-012-9778-z
  19. Johnson AC, X Jin, N Nakada and JP Sumpter. 2020. Learning from the past and considering the future of chemicals in the environment. Science 367:384-387. https://doi.org/10.1126/science.aay663
  20. Jung SM, JS Bae, SG Kang, JS Son, JH Jeon, HJ Lee, JY Jeon, M Sidharthan, SH Ryu and HW Shin. 2017. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae. Mar. Pollut. Bull. 124:811-818. https://doi.org/10.1016/j.marpolbul.2016.11.047
  21. Key PB, SL Meyer and KW Chung. 2003. Lethal and sub-lethal effects of the fungicide chlorothalonil on three life stages of the grass shrimp, Palaemonetes pugio. J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes 38:539-549. https://doi.org/10.1081/PFC-120023512
  22. Klenell M, P Snoeijs and M Pedersen. 2004. Active carbon uptake in Laminaria digitata and L. Saccharina (Phaeophyta) is driven by a proton pump in the plasma membrane. pp. 41-53. In: Biology of the Baltic Sea. Developments in Hydrobiology, Vol 176 (Kautsky H and P Snoeijs, eds.). Springer. Dordrecht, Germany. https://doi.org/10.1007/978-94-017-0920-0_4
  23. Koning JT, UE Bollmann and K Bester. 2020. The occurrence of modern organic antifouling biocides in Danish marinas. Mar. Pollut. Bull. 158:111402. https://doi.org/10.1016/j.marpolbul.2020.111402
  24. Konstantinou IK and TA Albanis. 2004. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: A review. Environ. Inter. 30:235-248. https://doi.org/10.1016/S0160-4120(03)00176-4
  25. Lee H, J Park, K Shin, S Depuydt, S Choi, J De Saeger and T Han. 2020c. Application of a programmed semi-automated Ulva pertusa bioassay for testing single toxicants and stream water quality. Aquat. Toxicol. 221:105426. https://doi.org/10.1016/j.aquatox.2020.105426
  26. Lee H, S Depuydt, S Choi, T Han and J Park. 2020b. Rapid toxicity assessment of six antifouling booster biocides using a microplate-based chlorophyll fluorescence in Undaria pinnatifida gametophytes. Ecotoxicology 29:559-570. https://doi.org/10.1007/s10646-020-02207-2
  27. Lee JW, AH Jo, DC Lee, CY Choi, JC Kang and JH Kim. 2023. Review of cadmium toxicity effects on fish: Oxidative stress and immune responses. Environ. Res. 236:116600. http://doi.org/10.1016/j.envres.2023.116600
  28. Lee JW, H Choi, YH Park, SM Lee, YS Choi, S Heo and UK Hwang. 2020a. Toxic evaluation of antifouling paint (Irgarol and Diuron) using the population growth rate of marine diatom, Skeletonema costatum. J. Mar. Life Sci. 5:9-16. https://doi.org/10.23005/KSMLS.2020.5.1.9
  29. Lee JW, YH Park, BR Sim, HJ Jeon, S Heo and UK Hwang. 2022b. A study of environmental conditions of survival rate and relative growth rate in female gametophyte of Undaria pinnatifida for toxicity assessment. J. Mar. Life Sci. 7:86-93. https://doi.org/10.23005/ksmls.2022.7.2.86
  30. Lee MRN, UJ Kim, IS Lee, MK Choi and JE Oh. 2015. Assessment of organotin and tin-free antifouling paints contamination in the Korean coastal area. Mar. Pollut. Bull. 99:157-165. https://doi.org/10.1016/j.marpolbul.2015.07.038
  31. Lee S and YW Lee. 2016. Determination of the concentrations of alternative antifouling agents on the Korean coast. Mar. Pollut. Bull. 113:263-257. https://doi.org/10.1016/j.marpolbul.2016.09.030
  32. Lee S, MN Haque and JS Rhee. 2022a. Acute and mutigenerational effects of environmental concentration of the antifouling agent dichlofluanid on the mysid model, Neomysis awatschensis. Environ. Pollut. 311:119996. https://doi.org/10.1016/j.envpol.2022.119996
  33. Lee SE, HS Won, YW Lee and DS Lee. 2010. Study on the new antifouling compounds in Korean coasts. Bull. Environ. Contam. Toxicol. 85:538-543. https://doi.org/10.1007/s00128-010-0145-3
  34. Liu F, SJ Pang and SQ Gao. 2016. Growth performance of unialgal gametophytes of the brown alga Saccharina japonica in mass culture conditions. J. Appl. Phycol. 28:1145-1152. https://doi.org/10.1007/s10811-015-0675-5
  35. Luo HW, M Lin, XX Bai, B Xu, M Li, JJ Ding, WJ Hong and LH Guo. 2023. Water quality criteria derivation and tiered ecological risk evaluation of antifouling biocides in marine environment. Mar. Pollut. Bull. 187:114500. https://doi.org/10.1016/j.marpolbul.2022.114500
  36. Mercado JM, JR Andria, JL Perez-Llorens, JJ Vergara and L Axelsson. 2006. Evidence for a plasmalemma-based CO2 concentrating mechanism in Laminaria saccharina. Photosynth. Res. 88:259-268. https://doi.org/10.1007/s11120-006-9039-y
  37. MOF. 2018. Korean Standard Method of Examination for Marine Environment. Ministry of Oceans and Fisheries. Sejong, Korea. https://www.law.go.kr/LSW/admRulInfoP.do?admRulSe-q=2100000170850#J6-0:0. Accessed August 29, 2023
  38. Okamura H, T Watanabe, I Aoyama and M Hasobe. 2002. Toxicity evaluation of new antifouling compounds using suspension-cultured fish cells. Chemosphere 46:945-951. https://doi.org/10.1016/S0045-6535(01)00204-1
  39. Onduka T, A Kakuno, K Kono, K Ito, K Mochida and K Fujii. 2012. Toxicity of chlorothalonil to marine organisms. Fish. Sci. 78:1301-1308. https://doi.org/10.1007/s12562-012-0562-9
  40. Park YH, BR Sim, UK Hwang and JW Lee. 2023. The impact of chlorothalonil on female gametophyte survival rate and relative growth rate of Undaria pinnatifida. Korean J. Environ. Biol. 41:256-265. https://doi.org/10.11626/KJEB.2023.41.3.256
  41. Paz-Villarraga CA, IB Castro and G Fillmann. 2022. Biocides in antifouling paint formulations currently registered for use. Environ. Sci. Pollut. Res. 29:30090-30101. https://doi.org/10.1007/s11356-021-17662-5
  42. Rola RC, AS Guerreuro, H Gabe, MA Geihs, CE da Rosa and JZ Sandrini. 2020. Antifouling biocide dichlofluanid modulates the antioxidant defense system of the brown mussel Perna perna. Mar. Pollut. Bull. 157:111321. https://doi.org/10.1016/j.marpolbul.2020.111321
  43. Suzuki T, H Nojiri, H Isono and T Ochi. 2004. Oxidative damages in isolated rat hepatocytes treated with the organochlorine fungicides captan, dichlofluanid and chlorothalonil. Toxicology 204:97-107. https://doi.org/10.1016/j.tox.2004.06.025
  44. Tatewaki M. 1966. Formation of a crustose sporophyte with unilocular sporangia in Scitosiphon lomentaria. Phycologia 6:62-66. https://doi.org/10.2216/i0031-8884-6-1-62.1
  45. Tokur O and A Aksoy. 2023. Environmental concentrations of antifouling biocides affect cell proliferation, possibly by a synergic interaction. J. Sea Res. 191:102330. https://doi.org/10.1016/j.seares.2022.102330