Acknowledgement
본 논문은 한국연구재단의 연구과제(과제번호 NRF-2021R1I1A1A01054658과 NRF-2021R1A6A1A10045235)의 지원을 통하여 작성되었다. 또한, 환경부(MOE)를 재원으로 한 한국환경산업기술원(KEITI)의 야생생물 유래 친환경 신소재 및 공정 기술개발사업과 수생태계 건강성 확보 기술개발사업(2021003280004 and 2022003040001)의 지원을 받아 연구되었다.
References
- Ahmad M, SS Lee, X Dou, D Mohan, JK Sung, JE Yang and YS Ok. 2012. Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 118:536-544. https://doi.org/10.1016/j.biortech.2012.05.042
- Ampiaw RE, M Yaqub and W Lee. 2019. Adsorption of microcystin onto activated carbon: A review. Membr. Water Treat. 10:405-415. https://doi.org/10.12989/mwt.2019.10.6.405
- Arman T and JD Clarke. 2021. Microcystin toxicokinetics, molecular toxicology, and pathophysiology in preclinical rodent models and humans. Toxins 13:537. https://doi.org/10.3390/toxins13080537
- Bavithra G, J Azevedo, F Oliveira, J Morais, E Pinto, IMPLVO Ferreira, V Vasconcelos, A Campos and CMR Almeida. 2019. Assessment of constructed wetlands' potential for the removal of cyanobacteria and microcystins (MC-LR). Water 12:10. https://doi.org/10.3390/w12010010
- Campinas M and MJ Rosa. 2006. The ionic strength effect on microcystin and natural organic matter surrogate adsorption onto PAC. J. Colloid Interface Sci. 299:520-529. https://doi.org/10.1016/j.jcis.2006.02.042
- Campinas M and MJ Rosa. 2010. Removal of microcystins by PAC/UF. Sep. Purif. Technol. 71:114-120. https://doi.org/10.1016/j.seppur.2009.11.010
- Campinas MMP. 2009. Removal of cyanobacteria and cyanotoxins from drinking water by powdered activated carbon adsorption/ultrafiltration. Ph.D. Dissertation. Algarve University. Faro, Portugal.
- Cermakova L, K Fialova, I Kopecka, M Baresova and M Pivokonsky. 2022. Investigating adsorption of model low-MW AOM components onto different types of activated carbon-influence of temperature and pH value. Environ. Technol. 43:1152-1162. https://doi.org/10.1080/09593330.2020.1820082
- Chen G, X Ding and W Zhou. 2020. Study on ultrasonic treatment for degradation of microcystins (MCs). Ultrason. Sonochem. 63:104900. https://doi.org/10.1016/j.ultsonch.2019.104900
- Chen L, J Chen, X Zhang and P Xie. 2016. A review of reproductive toxicity of microcystins. J. Hazard. Mater. 301:381-399. https://doi.org/10.1016/j.jhazmat.2015.08.041
- Chen Y, X Zhang, Q Liu, X Wang, L Xu and Z Zhang. 2015. Facile and economical synthesis of porous activated semi-cokes for highly efficient and fast removal of microcystin-LR. J. Hazard. Mater. 299:325-332. https://doi.org/10.1016/j.jhazmat.2015.06.049
- Chorus I, IR Falconer, HJ Salas and J Bartram. 2000. Health risks caused by freshwater cyanobacteria in recreational waters. J. Toxicol. Env. Health-Pt b-Crit. Rev. 3:323-347. https://doi.org/10.1080/109374000436364
- Considine R, R Denoyel, P Pendleton, R Schumann and SH Wong. 2001. The influence of surface chemistry on activated carbon adsorption of 2-methylisoborneol from aqueous solution. Colloid Surf. A-Physicochem. Eng. Asp. 179:271-280. https://doi.org/10.1016/S0927-7757(00)00647-6
- Dai Y, N Zhang, C Xing, Q Cui and Q Sun. 2019. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review. Chemosphere 223:12-27. https://doi.org/10.1016/j.chemosphere.2019.01.161
- Daly RI, L Ho and JD Brookes. 2007. Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation. Environ. Sci. Technol. 41:4447-4453. https://doi.org/10.1021/es070318s
- Dawson RM. 1998. The toxicology of microcystins. Toxicon 36:953-962. https://doi.org/10.1016/s0041-0101(97)00102-5
- De Ridder DJ, ARD Verliefde, K Schoutteten, B van der Linden, SGJ Heijman, I Beurroies, R Denoyel, GL Amy and JC van Dijk. 2013. Relation between interfacial energy and adsorption of organic micropollutants onto activated carbon. Carbon 53:153-160. https://doi.org/10.1016/j.carbon.2012.10.042
- Donati C, M Drikas, R Hayes and G Newcombe. 1994. Microcystin-LR adsorption by powdered activated carbon. Water Res. 28:1735-1742. https://doi.org/10.1016/0043-1354(94)90245-3
- El Bouaidi W, G Enaime, M Loudiki, A Yaacoubi, M Douma, A Ounas and M Lubken. 2022. Adsorbents used for microcystin removal from water sources: current knowledge and future prospects. Processes 10:1235. https://doi.org/10.3390/pr10071235
- Fahnenstiel GL, DF Millie, J Dyble, RW Litaker, PA Tester, MJ McCormick, R Rediske and D Klarer. 2008. Microcystin concentrations and cell quotas in Saginaw Bay, Lake Huron. Aqua. Ecosyst. Health Manag. 11:190-195. https://doi.org/10.1080/14634980802092757
- Giannuzzi L, D Sedan, R Echenique and D Andrinolo. 2011. An acute case of intoxication with cyanobacteria and cyanotoxins in recreational water in Salto Grande Dam, Argentina. Mar. Drugs 9:2164-2175. https://doi.org/10.3390/md9112164
- Griffith AW and CJ Gobler. 2020. Harmful algal blooms: A climate change co-stressor in marine and freshwater ecosystems. Harmful Algae 91:101590. https://doi.org/10.1016/j.hal.2019.03.008
- Han C, L Machala, I Medrik, R Prucek, RP Kralchevska and DD Dionysiou. 2017. Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination. Environ. Sci. Pollut. Res. 24:19435-19443. https://doi.org/10.1007/s11356-017-9566-4
- He X, YL Liu, A Conklin, J Westrick, LK Weavers, DD Dionysiou, JJ Lenhart, PJ Mouser, D Szlag and HW Walker. 2016. Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful Algae 54:174-193. https://doi.org/10.1016/j.hal.2016.01.001
- Ho L, P Lambling, H Bustamante, P Duker and G Newcombe. 2011. Application of powdered activated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies. Water Res. 45:2954-2964. https://doi.org/10.1016/j.watres.2011.03.014
- Huang H, J Tang, K Gao, R He, H Zhao and D Werner. 2017. Characterization of KOH modified biochars from different pyrolysis temperatures and enhanced adsorption of antibiotics. RSC Adv. 7:14640-14648. https://doi.org/10.1039/C6RA27881G
- Huang WJ, BL Cheng and YL Cheng. 2007. Adsorption of microcystin-LR by three types of activated carbon. J. Hazard. Mater. 141:115-122. https://doi.org/10.1016/j.jhazmat.2006.06.122
- Inyang M and E Dickenson. 2015. The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere 134:232-240. https://doi.org/10.1016/j.chemosphere.2015.03.072
- Jeon BS, J Han, SK Kim, JH Ahn, HC Oh and HD Park. 2015. An overview of problems cyanotoxins produced by cyanobacteria and the solutions thereby. J. Korean Soc. Environ. Eng. 37:657-667. https://doi.org/10.4491/KSEE.2015.37.12.657
- Kaetzl K, M Lubken, T Gehring and M Wichern. 2018. Efficient low-cost anaerobic treatment of wastewater using biochar and woodchip filters. Water 10:818. https://doi.org/10.3390/w10070818
- Keiluweit M, PS Nico, MG Johnson and M Kleber. 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 44:1247-1253. https://doi.org/10.1021/es9031419
- Kim H, J Byun, IT Choi, YH Park, S Kim and YE Choi. 2019. Removal of Microcystis aeruginosa using polyethylenimine-coated alginate/waste biomass composite biosorbent. Korean J. Environ. Biol. 37:741-748. https://doi.org/10.11626/KJEB.2019.37.4.741
- Kim HS, YH Park, K Nam, S Kim and YE Choi. 2021. Amination of cotton fiber using polyethyleneimine and its application as an adsorbent to directly remove a harmful cyanobacterial species, Microcystis aeruginosa, from an aqueous medium. Environ. Res. 197:111235. https://doi.org/10.1016/j.envres.2021.111235
- Kim S, MS Jeon, JY Kim, SJ Sim, JS Choi, J Kwon and YE Choi. 2018a. Adsorptive removal of harmful algal species Microcystis aeruginosa directly from aqueous solution using polyethylenimine coated polysulfone-biomass composite fiber. Biodegradation 29:349-358. https://doi.org/10.1007/s10532-018-9840-2
- Kim S, SW Won, CW Cho and YS Yun. 2016b. Valorization of Escherichia coli waste biomass as a biosorbent for removing reactive dyes from aqueous solutions. Desalin. Water Treat. 57:20084-20090. https://doi.org/10.1080/19443994.2015.1108235
- Kim S, YE Choi and YS Yun. 2016a. Ruthenium recovery from acetic acid industrial effluent using chemically stable and high-performance polyethylenimine-coated polysulfone-Escherichia coli biomass composite fibers. J. Hazard. Mater. 313:29-36. https://doi.org/10.1016/j.jhazmat.2016.03.075
- Kim S, YS Yun and YE Choi. 2018b. Development of waste biomass based sorbent for removal of cyanotoxin microcystin-LR from aqueous phases. Bioresour. Technol. 247:690-696. https://doi.org/10.1016/j.biortech.2017.09.164
- Kloss S, F Zehetner, A Dellantonio, R Hamid, F Ottner, V Liedtke, M Schwanninger, MH Gerzabek and G Soja. 2012. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J. Environ. Qual. 41:990-1000. https://doi.org/10.2134/jeq2011.0070
- Le Manach S, N Khenfech, H Huet, Q Qiao, C Duval, A Marie, G Bolbach, G Clodic, C Djediat and C Bernard. 2016. Gender-specific toxicological effects of chronic exposure to pure microcystin-LR or complex Microcystis aeruginosa extracts on adult medaka fish. Environ. Sci. Technol. 50:8324-8334. https://doi.org/10.1021/acs.est.6b01903
- Lee J and HW Walker. 2006. Effect of process variables and natural organic matter on removal of microcystin-LR by PAC-UF. Environ. Sci. Technol. 40:7336-7342. https://doi.org/10.1021/es060352r
- Lee J and HW Walker. 2008. Mechanisms and factors influencing the removal of microcystin-LR by ultrafiltration membranes. J. Membr. Sci. 320:240-247. https://doi.org/10.1016/j.memsci.2008.04.007
- Li F, A Yuasa, K Ebie, Y Azuma, T Hagishita and Y Matsui. 2002. Factors affecting the adsorption capacity of dissolved organic matter onto activated carbon: Modified isotherm analysis. Water Res. 36:4592-4604. https://doi.org/10.1016/S0043-1354(02)00174-4
- Li H and G Pan. 2014. Enhanced and continued degradation of microcystins using microorganisms obtained through natural media. J. Microbiol. Methods 96:73-80. https://doi.org/10.1016/j.mimet.2013.11.005
- Li J, L Cao, Y Yuan, R Wang, Y Wen and J Man. 2018. Comparative study for microcystin-LR sorption onto biochars produced from various plant- and animal-wastes at different pyrolysis temperatures: Influencing mechanisms of biochar properties. Bioresour. Technol. 247:794-803. https://doi.org/10.1016/j.biortech.2017.09.120
- Li J, R Li and J Li. 2017. Current research scenario for microcystins biodegradation - A review on fundamental knowledge, application prospects and challenges. Sci. Total Environ. 595:615-632. https://doi.org/10.1016/j.scitotenv.2017.03.285
- Li L, Y Qiu, J Huang, F Li and GD Sheng. 2014. Mechanisms and factors influencing adsorption of microcystin-LR on biochars. Water Air Soil Pollut. 225:2220. https://doi.org/10.1007/s11270-014-2220-6
- Li Q, VL Snoeyink, BJ Mariaas and C Campos. 2003. Elucidating competitive adsorption mechanisms of atrazine and NOM using model compounds. Water Res. 37:773-784. https://doi.org/10.1016/S0043-1354(02)00390-1
- Liu G, H Zheng, X Zhai and Z Wang. 2018. Characteristics and mechanisms of microcystin-LR adsorption by giant reed-derived biochars: Role of minerals, pores, and functional groups. J. Clean. Prod. 176:463-473. https://doi.org/10.1016/j.jclepro.2017.12.156
- Liu X, Z Chen, N Zhou, J Shen and M Ye. 2010. Degradation and detoxification of microcystin-LR in drinking water by sequential use of UV and ozone. J. Environ. Sci. 22:1897-1902. https://doi.org/10.1016/S1001-0742(09)60336-3
- Liu Y, Q Cao, F Luo and J Chen. 2009. Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae. J. Hazard. Mater. 163:931-938. https://doi.org/10.1016/j.jhazmat.2008.07.046
- MacKintosh C, KA Beattie, S Klumpp, P Cohen and GA Codd. 1990. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS lett. 264: 187-192. https://doi.org/10.1016/0014-5793(90)80245-E
- Mahmoodi NM, F Najafi and A Neshat. 2013. Poly (amidoamine-co-acrylic acid) copolymer: Synthesis, characterization and dye removal ability. Ind. Crop Prod. 42:119-125. https://doi.org/10.1016/j.indcrop.2012.05.025
- Mahmoodi NM, U Sadeghi, A Maleki, B Hayati and F Najafi. 2014. Synthesis of cationic polymeric adsorbent and dye removal isotherm, kinetic and thermodynamic. J. Ind. Eng. Chem. 20:2745-2753. https://doi.org/10.1016/j.jiec.2013.11.002
- Mashile PP, A Mpupa and PN Nomngongo. 2018. Adsorptive removal of microcystin-LR from surface and wastewater using tyre-based powdered activated carbon: Kinetics and isotherms. Toxicon 145:25-31. https://doi.org/10.1016/j.toxicon.2018.02.044
- Mbukwa EA, TAM Msagati and BB Mamba. 2012. Quantitative variations of intracellular microcystin-LR,-RR and-YR in samples collected from four locations in Hartbeespoort Dam in North West Province(South Africa) during the 2010/2011 summer season. Int. J. Environ. Res. Pub. Health 9:3484-3505. https://doi.org/10.3390/ijerph9103484
- Melaram R, AR Newton and J Chafin. 2022. Microcystin contamination and toxicity: Implications for agriculture and public health. Toxins 14:350. https://doi.org/10.3390/toxins14050350
- Merel S, D Walker, R Chicana, S Snyder, E Baures and O Thomas. 2013. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 59:303-327. https://doi.org/10.1016/j.envint.2013.06.013
- Moreno-Castilla C. 2004. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42:83-94. https://doi.org/10.1016/j.carbon.2003.09.022
- Newcombe G, M Drikas and R Hayes. 1997. Influence of characterised natural organic material on activated carbon adsorption: II. Effect on pore volume distribution and adsorption of 2-methylisoborneol. Water Res. 31:1065-1073. https://doi.org/10.1016/S0043-1354(96)00325-9
- Nille OS, AS Patil, RD Waghmare, VM Naik, DB Gunjal, GB Kolekar and AH Gore. 2021. Valorization of tea waste for multifaceted applications: A step toward green and sustainable development. pp. 219-236. In: Valorization of Agri-Food Wastes and By-Products. Recent Trends, Innovations and Sustainability Challenges(Bhat R ed.). Academic Press. London, United Kingdom. https://doi.org/10.1016/B978-0-12-824044-1.00046-5
- Nyakairu GWA, CB Nagawa and J Mbabazi. 2010. Assessment of cyanobacteria toxins in freshwater fish: A case study of Murchison Bay (Lake Victoria) and Lake Mburo, Uganda. Toxicon 55:939-946. https://doi.org/10.1016/j.toxicon.2009.07.024
- O'Neil J, T Davis, M Burford and C Gobler. 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313-334. https://doi.org/10.1016/j.hal.2011.10.027
- Paerl HW, RS Fulton, PH Moisander and J Dyble. 2001. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J. 1:139109. https://doi.org/10.1100/tsw.2001.16
- Palagama DSW, AM Devasurendra, D Baliu-Rodriguez, JR Kirchhoff and D Isailovic. 2019. Treated rice husk as a recyclable sorbent for the removal of microcystins from water. Sci. Total Environ. 666:1292-1300. https://doi.org/10.1016/j.scitotenv.2019.02.042
- Park JA, SM Jung, IG Yi, JW Choi, SB Kim and SH Lee. 2017. Adsorption of microcystin-LR on mesoporous carbons and its potential use in drinking water source. Chemosphere 177:15-23. https://doi.org/10.1016/j.chemosphere.2017.02.150
- Park JA, SM Jung, JW Choi, JH Kim, S Hong and SH Lee. 2018. Mesoporous carbon for efficient removal of microcystin-LR in drinking water sources, Nak-Dong River, South Korea: Application to a field-scale drinking water treatment plant. Chemosphere 193:883-891. https://doi.org/10.1016/j.chemosphere.2017.11.092
- Park YH, HS Kim, H Kim, J Park, S Kim and YE Choi. 2022a. Direct removal of harmful cyanobacterial species by adsorption process and their potential use as a lipid source. Chem. Eng. J. 427:131727. https://doi.org/10.1016/j.cej.2021.131727
- Park YH, S Kim and YE Choi. 2022b. Remediation of Microcystis aeruginosa blooming water using a reusable polyethylene-mine-polyvinyl chloride composite adsorbent. J. Water Process. Eng. 49:103060. https://doi.org/10.1016/j.jwpe.2022.103060
- Park YH, S Kim, HS Kim, C Park and YE Choi. 2020. Adsorption strategy for removal of harmful Cyanobacterial species Microcystis aeruginosa using chitosan fiber. Sustainability 12:4587. https://doi.org/10.3390/su12114587
- Pavagadhi S, ALL Tang, M Sathishkumar, KP Loh and R Balasubramanian. 2013. Removal of microcystin-LR and microcystinRR by graphene oxide: Adsorption and kinetic experiments. Water Res. 47:4621-4629. https://doi.org/10.1016/j.watres.2013.04.033
- Pelekani C and V Snoeyink. 1999. Competitive adsorption in natural water: role of activated carbon pore size. Water Res. 33:1209-1219. https://doi.org/10.1016/S0043-1354(98)00329-7
- Pendleton P, R Schumann and SH Wong. 2001. Microcystin-LR adsorption by activated carbon. J. Colloid Interface Sci. 240:1-8. https://doi.org/10.1006/jcis.2001.7616
- Pietsch J, K Bornmann and W Schmidt. 2002. Relevance of intra-and extracellular cyanotoxins for drinking water treatment. Acta Hydrochim. Hydrobiol. 30:7-15. https://doi.org/10.1002/1521-401X(200207)30:1<7::AID-AHEH7>3.0.CO;2-W
- Poste AE, RE Hecky and SJ Guildford. 2011. Evaluating microcystin exposure risk through fish consumption. Environ. Sci. Technol. 45:5806-5811. https://doi.org/10.1021/es200285c
- Rastogi RP, RP Sinha and A Incharoensakdi. 2014. The cyanotoxin-microcystins: current overview. Rev. Environ. Sci. Bio-Technol. 13:215-249. https://doi.org/10.1007/s11157-014-9334-6
- Rodriguez E, ME Majado, J Meriluoto and JL Acero. 2007. Oxidation of microcystins by permanganate: reaction kinetics and implications for water treatment. Water Res. 41:102-110. https://doi.org/10.1016/j.watres.2006.10.004
- Sathishkumar M, S Pavagadhi, A Mahadevan, R Balasubramanian and D Burger. 2010a. Removal of a potent cyanobacterial hepatotoxin by peat. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 45:1877-1884. https://doi.org/10.1080/10934529.2010.520598
- Sathishkumar M, S Pavagadhi, K Vijayaraghavan, R Balasubramanian and S Ong. 2010b. Experimental studies on removal of microcystin-LR by peat. J. Hazard. Mater. 184:417-424. https://doi.org/10.1016/j.jhazmat.2010.08.051
- Schreiber B, T Brinkmann, V Schmalz and E Worch. 2005. Adsorption of dissolved organic matter onto activated carbon - the influence of temperature, absorption wavelength, and molecular size. Water Res. 39:3449-3456. https://doi.org/10.1016/j.watres.2005.05.050
- Shi W, W Tan, L Wang and G Pan. 2016. Removal of Microcystis aeruginosa using cationic starch modified soils. Water Res. 97:19-25. https://doi.org/10.1016/j.watres.2015.06.029
- Song HJ, R Gurav, SK Bhatia, EB Lee, HJ Kim, YH Yang, E Kan, HH Kim, SH Lee and YK Choi. 2021. Treatment of microcystin-LR cyanotoxin contaminated water using Kentucky bluegrass-derived biochar. J. Water Process. Eng. 41:102054. https://doi.org/10.1016/j.jwpe.2021.102054
- Svircev Z, D Lalic, G Bojadzija Savic, N Tokodi, D Drobac Backovic, L Chen, J Meriluoto and GA Codd. 2019. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol. 93:2429-2481. https://doi.org/10.1007/s00204-019-02524-4
- Tran CD, S Duri, A Delneri and M Franko. 2013. Chitosan-cellulose composite materials: Preparation, characterization and application for removal of microcystin. J. Hazard. Mater. 355-366. https://doi.org/10.1016/j.jhazmat.2013.02.046
- Valeria AM, EJ Ricardo, P Stephan and WD Alberto. 2006. Degradation of microcystin-RR by Sphingomonas sp. CBA4 isolated from San Roque reservoir (Cordoba-Argentina). Biodegradation 17:447. https://doi.org/10.1007/s10532-005-9015-9
- Vlad S, WB Anderson, S Peldszus and PM Huck. 2014. Removal of the cyanotoxin anatoxin-a by drinking water treatment processes: A review. J. Water Health 12:601-617. https://doi.org/10.2166/wh.2014.018
- Volesky B and Z Holan. 1995. Biosorption of heavy metals. Biotechnol. Prog. 11:235-250. https://doi.org/10.1021/bp00033a001
- Volesky B. 2007. Biosorption and me. Water Res. 41:4017-4029. https://doi.org/10.1016/j.watres.2007.05.062
- Wagner ND, E Quach, S Buscho, A Ricciardelli, A Kannan, SW Naung, G Phillip, B Sheppard, L Ferguson, A Allen, C Sharon, JR Duke, RB Taylor, BJ Austin, JK Stovall, BE Haggard, CK Chambliss, BW Brooks and JT Scott. 2021. Nitrogen form, concentration, and micronutrient availability affect microcystin production in cyanobacterial blooms. Harmful Algae 103:102002. https://doi.org/10.1016/j.hal.2021.102002
- Wang X, M Utsumi, Y Yang, D Li, Y Zhao, Z Zhang, C Feng, N Sugiura and JJ Cheng. 2015. Degradation of microcystin-LR by highly efficient AgBr/Ag3PO4/TiO2 heterojunction photocatalyst under simulated solar light irradiation. Appl. Surf. Sci. 325:1-12. https://doi.org/10.1016/j.apsusc.2014.10.078
- Wei L and J Lu. 2021. Adsorption of microcystin-LR by rice straw biochars with different pyrolysis temperatures. Environ. Technol. Innov. 23:101609. https://doi.org/10.1016/j.eti.2021.101609
- Won SW, P Kotte, W Wei, A Lim and YS Yun. 2014. Biosorbents for recovery of precious metals. Bioresour. Technol. 160:203-212. https://doi.org/10.1016/j.biortech.2014.01.121
- Won SW, SB Choi and YS Yun. 2006. Performance and mechanism in binding of Reactive Orange 16 to various types of sludge. Biochem. Eng. J. 28:208-214. https://doi.org/10.1016/j.bej.2005.11.006
- Won SW, SB Choi and YS Yun. 2013. Binding sites and mechanisms of cadmium to the dried sewage sludge biomass. Chemosphere 93:146-151. https://doi.org/10.1016/j.chemosphere.2013.05.011
- Wu W, M Yang, Q Feng, K McGrouther, H Wang, H Lu and Y Chen. 2012. Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenerg. 47:268-276. https://doi.org/10.1016/j.biombioe.2012.09.034
- Wurtsbaugh WA, HW Paerl and WK Dodds. 2019. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdiscip. Rev.-Water 6:e1373. https://doi.org/10.1002/wat2.1373
- Xiang L, YW Li, BL Liu, HM Zhao, H Li, QY Cai, CH Mo, MH Wong and QX Li. 2019. High ecological and human health risks from microcystins in vegetable fields in southern China. Environ. Int. 133:105142. https://doi.org/10.1016/j.envint.2019.105142
- Yang E, C Yao, Y Liu, C Zhang, L Jia, D Li, Z Fu, D Sun, SR Kirk and D Yin. 2018. Bamboo-derived porous biochar for efficient adsorption removal of dibenzothiophene from model fuel. Fuel 211:121-129. https://doi.org/10.1016/j.fuel.2017.07.099
- Yang F, F Huang, H Feng, J Wei, IY Massey, G Liang, F Zhang, L Yin, S Kacew, X Zhang and Y Pu. 2020. A complete route for biodegradation of potentially carcinogenic cyanotoxin microcystin-LR in a novel indigenous bacterium. Water Res. 174:115638. https://doi.org/10.1016/j.watres.2020.115638
- Zhan MM and Y Hong. 2022. Recent advances in technologies for removal of microcystins in water: A review. Curr. Pollut. Rep. 8:113-127. https://doi.org/10.1007/s40726-022-00215-w
- Zhang H, G Zhu, X Jia, Y Ding, M Zhang, Q Gao, C Hu and S Xu. 2011. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan. J. Environ. Sci. 23:1983-1988. https://doi.org/10.1016/S1001-0742(10)60676-6
- Zhang J, J Liu and R Liu. 2015. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour. Technol. 176:288-291. https://doi.org/10.1016/j.biortech.2014.11.011
- Zhang X and L Jiang. 2011. Fabrication of novel rattle-type magnetic mesoporous carbon microspheres for removal of microcystins. J. Mater. Chem. 21:10653-10657. https://doi.org/10.1039/C1JM12263K
- Zhu S, D Yin, N Gao, S Zhou, Z Wang and Z Zhang. 2016. Adsorption of two microcystins onto activated carbon: Equilibrium, kinetic, and influential factors. Desalin. Water Treat. 57:23666-23674. https://doi.org/10.1080/19443994.2015.1137492