DOI QR코드

DOI QR Code

Review on hazardous microcystins originating from harmful cyanobacteria and corresponding eliminating methods

유해 남세균 유래 마이크로시스틴의 위해성과 제거 방안 고찰

  • Sok Kim (Ojeong Resilience Institute, Korea University) ;
  • Yoon-E Choi (Ojeong Resilience Institute, Korea University)
  • 김석 (고려대학교 오정리질리언스연구원) ;
  • 최윤이 (고려대학교 오정리질리언스연구원)
  • Received : 2023.08.27
  • Accepted : 2023.10.30
  • Published : 2023.12.31

Abstract

Cyanobacterial harmful algal blooms (Cyano-HABs) are an international environmental problem that negatively affects the ecosystem as well as the safety of water resources by discharging cyanotoxins. In particular, the discharge of microcystins (MCs), a highly toxic substance, has been studied most actively, and various water treatment methods have been proposed for this purpose. In this paper, we reviewed adsorption technology, which is recognized as the most feasible, economical, and efficient method among suggested treatment methods for removing MCs. Activated carbons (AC) are widely used adsorbents for MCs removal, and excellent MCs adsorption performance has been reported. Research on alternative adsorption materials for AC such as biochar and biosorbents has been conducted, however, their performance was lower compared to activated carbon. The impacts of adsorbent properties(characteristics of pore surface chemistry) and environmental factors (solution pH, temperature, natural organic matter, and ionic strength) on the MCs adsorption performance were also discussed. In addition, toward effective control of MCs, the possibility of the direct removal of harmful cyanobacteria as well as the removal of dissolved MCs using adsorption strategy was examined. However, to fully utilize the adsorption for the removal of MCs, the application and optimization under actual environmental conditions are still required, thereby meeting the environmental and economic standards. From this study, crucial insights could be provided for the development and selection of effective adsorbent and subsequent adsorption processes for the removal of MCs from water resources.

수자원의 부영양화와 인위적인 수변환경 조성 및 기후 변화의 영향으로 인한 유해 남세균의 대발생의 빈도와 강도가 증가하고 있다. 유해 남세균은 시아노톡신 (Cyanotoxins)을 배출하여 수자원의 안전뿐 아니라 생태계에 악영향을 주기 때문에 국제적인 환경문제로 관심을 받고 있다. 특히, 독성이 강한 마이크로시스틴(microcystins, MCs)의 제거를 위한 연구가 가장 활발히 연구되어 왔으며 이를 위한 다양한 수처리 방법이 제안되고 있다. 본 논문에서는 기존에 보고된 마이크로시스틴 제거를 위한 기술 중 경제적, 효율적인 방안으로 평가받고 있는 흡착기술(adsorption)에 대하여 주안점을 두고 조사하였다. 활성탄(activated carbons)은 마이크로시스틴 제거를 위한 흡착소재로 가장 광범위하게 활용되고 있으며 우수한 마이크로시스틴 흡착성능이 보고되고 있다. 바이오차(biochar), 생체흡착소재(biosorbents)와 같은 활성탄을 대체하는 흡착소재의 활용 연구도 진행되고 있으나 활성탄에 비하여 그 효과가 미흡한 실정이다. 이러한 마이크로시스틴 흡착에는 흡착소재의 특성(기공 특성과 표면화학적 특성)과 환경인자(용액의 pH, 온도, 자연 유기물 및 이온성 물질)가 영향을 미치는 것으로 보고되고 있으며 이에 대한 고찰을 진행하였다. 또한, 보다 효과적인 제어를 위하여 용존 마이크로시스틴의 제거뿐 아니라 유해 남세균의 직접적인 제거를 위한 흡착기술의 활용 가능성도 확인하였다. 하지만, 마이크로시스틴의 제거를 위한 실질적인 흡착소재의 활용을 위해서는 실제 환경조건에서 적용과 환경적, 경제적인 관점에서의 최적화 연구가 필요하다고 판단된다. 본 논문은 체계적인 자료 조사 및 분석을 통하여 향후 마이크로시스틴의 제거를 위한 효과적인 흡착소재 및 적용방법의 개발 및 선별에 관한 통찰을 제시할 수 있을 것이다.

Keywords

Acknowledgement

본 논문은 한국연구재단의 연구과제(과제번호 NRF-2021R1I1A1A01054658과 NRF-2021R1A6A1A10045235)의 지원을 통하여 작성되었다. 또한, 환경부(MOE)를 재원으로 한 한국환경산업기술원(KEITI)의 야생생물 유래 친환경 신소재 및 공정 기술개발사업과 수생태계 건강성 확보 기술개발사업(2021003280004 and 2022003040001)의 지원을 받아 연구되었다.

References

  1. Ahmad M, SS Lee, X Dou, D Mohan, JK Sung, JE Yang and YS Ok. 2012. Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 118:536-544. https://doi.org/10.1016/j.biortech.2012.05.042
  2. Ampiaw RE, M Yaqub and W Lee. 2019. Adsorption of microcystin onto activated carbon: A review. Membr. Water Treat. 10:405-415. https://doi.org/10.12989/mwt.2019.10.6.405
  3. Arman T and JD Clarke. 2021. Microcystin toxicokinetics, molecular toxicology, and pathophysiology in preclinical rodent models and humans. Toxins 13:537. https://doi.org/10.3390/toxins13080537
  4. Bavithra G, J Azevedo, F Oliveira, J Morais, E Pinto, IMPLVO Ferreira, V Vasconcelos, A Campos and CMR Almeida. 2019. Assessment of constructed wetlands' potential for the removal of cyanobacteria and microcystins (MC-LR). Water 12:10. https://doi.org/10.3390/w12010010
  5. Campinas M and MJ Rosa. 2006. The ionic strength effect on microcystin and natural organic matter surrogate adsorption onto PAC. J. Colloid Interface Sci. 299:520-529. https://doi.org/10.1016/j.jcis.2006.02.042
  6. Campinas M and MJ Rosa. 2010. Removal of microcystins by PAC/UF. Sep. Purif. Technol. 71:114-120. https://doi.org/10.1016/j.seppur.2009.11.010
  7. Campinas MMP. 2009. Removal of cyanobacteria and cyanotoxins from drinking water by powdered activated carbon adsorption/ultrafiltration. Ph.D. Dissertation. Algarve University. Faro, Portugal.
  8. Cermakova L, K Fialova, I Kopecka, M Baresova and M Pivokonsky. 2022. Investigating adsorption of model low-MW AOM components onto different types of activated carbon-influence of temperature and pH value. Environ. Technol. 43:1152-1162. https://doi.org/10.1080/09593330.2020.1820082
  9. Chen G, X Ding and W Zhou. 2020. Study on ultrasonic treatment for degradation of microcystins (MCs). Ultrason. Sonochem. 63:104900. https://doi.org/10.1016/j.ultsonch.2019.104900
  10. Chen L, J Chen, X Zhang and P Xie. 2016. A review of reproductive toxicity of microcystins. J. Hazard. Mater. 301:381-399. https://doi.org/10.1016/j.jhazmat.2015.08.041
  11. Chen Y, X Zhang, Q Liu, X Wang, L Xu and Z Zhang. 2015. Facile and economical synthesis of porous activated semi-cokes for highly efficient and fast removal of microcystin-LR. J. Hazard. Mater. 299:325-332. https://doi.org/10.1016/j.jhazmat.2015.06.049
  12. Chorus I, IR Falconer, HJ Salas and J Bartram. 2000. Health risks caused by freshwater cyanobacteria in recreational waters. J. Toxicol. Env. Health-Pt b-Crit. Rev. 3:323-347. https://doi.org/10.1080/109374000436364
  13. Considine R, R Denoyel, P Pendleton, R Schumann and SH Wong. 2001. The influence of surface chemistry on activated carbon adsorption of 2-methylisoborneol from aqueous solution. Colloid Surf. A-Physicochem. Eng. Asp. 179:271-280. https://doi.org/10.1016/S0927-7757(00)00647-6
  14. Dai Y, N Zhang, C Xing, Q Cui and Q Sun. 2019. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review. Chemosphere 223:12-27. https://doi.org/10.1016/j.chemosphere.2019.01.161
  15. Daly RI, L Ho and JD Brookes. 2007. Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation. Environ. Sci. Technol. 41:4447-4453. https://doi.org/10.1021/es070318s
  16. Dawson RM. 1998. The toxicology of microcystins. Toxicon 36:953-962. https://doi.org/10.1016/s0041-0101(97)00102-5
  17. De Ridder DJ, ARD Verliefde, K Schoutteten, B van der Linden, SGJ Heijman, I Beurroies, R Denoyel, GL Amy and JC van Dijk. 2013. Relation between interfacial energy and adsorption of organic micropollutants onto activated carbon. Carbon 53:153-160. https://doi.org/10.1016/j.carbon.2012.10.042
  18. Donati C, M Drikas, R Hayes and G Newcombe. 1994. Microcystin-LR adsorption by powdered activated carbon. Water Res. 28:1735-1742. https://doi.org/10.1016/0043-1354(94)90245-3
  19. El Bouaidi W, G Enaime, M Loudiki, A Yaacoubi, M Douma, A Ounas and M Lubken. 2022. Adsorbents used for microcystin removal from water sources: current knowledge and future prospects. Processes 10:1235. https://doi.org/10.3390/pr10071235
  20. Fahnenstiel GL, DF Millie, J Dyble, RW Litaker, PA Tester, MJ McCormick, R Rediske and D Klarer. 2008. Microcystin concentrations and cell quotas in Saginaw Bay, Lake Huron. Aqua. Ecosyst. Health Manag. 11:190-195. https://doi.org/10.1080/14634980802092757
  21. Giannuzzi L, D Sedan, R Echenique and D Andrinolo. 2011. An acute case of intoxication with cyanobacteria and cyanotoxins in recreational water in Salto Grande Dam, Argentina. Mar. Drugs 9:2164-2175. https://doi.org/10.3390/md9112164
  22. Griffith AW and CJ Gobler. 2020. Harmful algal blooms: A climate change co-stressor in marine and freshwater ecosystems. Harmful Algae 91:101590. https://doi.org/10.1016/j.hal.2019.03.008
  23. Han C, L Machala, I Medrik, R Prucek, RP Kralchevska and DD Dionysiou. 2017. Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination. Environ. Sci. Pollut. Res. 24:19435-19443. https://doi.org/10.1007/s11356-017-9566-4
  24. He X, YL Liu, A Conklin, J Westrick, LK Weavers, DD Dionysiou, JJ Lenhart, PJ Mouser, D Szlag and HW Walker. 2016. Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful Algae 54:174-193. https://doi.org/10.1016/j.hal.2016.01.001
  25. Ho L, P Lambling, H Bustamante, P Duker and G Newcombe. 2011. Application of powdered activated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies. Water Res. 45:2954-2964. https://doi.org/10.1016/j.watres.2011.03.014
  26. Huang H, J Tang, K Gao, R He, H Zhao and D Werner. 2017. Characterization of KOH modified biochars from different pyrolysis temperatures and enhanced adsorption of antibiotics. RSC Adv. 7:14640-14648. https://doi.org/10.1039/C6RA27881G
  27. Huang WJ, BL Cheng and YL Cheng. 2007. Adsorption of microcystin-LR by three types of activated carbon. J. Hazard. Mater. 141:115-122. https://doi.org/10.1016/j.jhazmat.2006.06.122
  28. Inyang M and E Dickenson. 2015. The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere 134:232-240. https://doi.org/10.1016/j.chemosphere.2015.03.072
  29. Jeon BS, J Han, SK Kim, JH Ahn, HC Oh and HD Park. 2015. An overview of problems cyanotoxins produced by cyanobacteria and the solutions thereby. J. Korean Soc. Environ. Eng. 37:657-667. https://doi.org/10.4491/KSEE.2015.37.12.657
  30. Kaetzl K, M Lubken, T Gehring and M Wichern. 2018. Efficient low-cost anaerobic treatment of wastewater using biochar and woodchip filters. Water 10:818. https://doi.org/10.3390/w10070818
  31. Keiluweit M, PS Nico, MG Johnson and M Kleber. 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 44:1247-1253. https://doi.org/10.1021/es9031419
  32. Kim H, J Byun, IT Choi, YH Park, S Kim and YE Choi. 2019. Removal of Microcystis aeruginosa using polyethylenimine-coated alginate/waste biomass composite biosorbent. Korean J. Environ. Biol. 37:741-748. https://doi.org/10.11626/KJEB.2019.37.4.741
  33. Kim HS, YH Park, K Nam, S Kim and YE Choi. 2021. Amination of cotton fiber using polyethyleneimine and its application as an adsorbent to directly remove a harmful cyanobacterial species, Microcystis aeruginosa, from an aqueous medium. Environ. Res. 197:111235. https://doi.org/10.1016/j.envres.2021.111235
  34. Kim S, MS Jeon, JY Kim, SJ Sim, JS Choi, J Kwon and YE Choi. 2018a. Adsorptive removal of harmful algal species Microcystis aeruginosa directly from aqueous solution using polyethylenimine coated polysulfone-biomass composite fiber. Biodegradation 29:349-358. https://doi.org/10.1007/s10532-018-9840-2
  35. Kim S, SW Won, CW Cho and YS Yun. 2016b. Valorization of Escherichia coli waste biomass as a biosorbent for removing reactive dyes from aqueous solutions. Desalin. Water Treat. 57:20084-20090. https://doi.org/10.1080/19443994.2015.1108235
  36. Kim S, YE Choi and YS Yun. 2016a. Ruthenium recovery from acetic acid industrial effluent using chemically stable and high-performance polyethylenimine-coated polysulfone-Escherichia coli biomass composite fibers. J. Hazard. Mater. 313:29-36. https://doi.org/10.1016/j.jhazmat.2016.03.075
  37. Kim S, YS Yun and YE Choi. 2018b. Development of waste biomass based sorbent for removal of cyanotoxin microcystin-LR from aqueous phases. Bioresour. Technol. 247:690-696. https://doi.org/10.1016/j.biortech.2017.09.164
  38. Kloss S, F Zehetner, A Dellantonio, R Hamid, F Ottner, V Liedtke, M Schwanninger, MH Gerzabek and G Soja. 2012. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J. Environ. Qual. 41:990-1000. https://doi.org/10.2134/jeq2011.0070
  39. Le Manach S, N Khenfech, H Huet, Q Qiao, C Duval, A Marie, G Bolbach, G Clodic, C Djediat and C Bernard. 2016. Gender-specific toxicological effects of chronic exposure to pure microcystin-LR or complex Microcystis aeruginosa extracts on adult medaka fish. Environ. Sci. Technol. 50:8324-8334. https://doi.org/10.1021/acs.est.6b01903
  40. Lee J and HW Walker. 2006. Effect of process variables and natural organic matter on removal of microcystin-LR by PAC-UF. Environ. Sci. Technol. 40:7336-7342. https://doi.org/10.1021/es060352r
  41. Lee J and HW Walker. 2008. Mechanisms and factors influencing the removal of microcystin-LR by ultrafiltration membranes. J. Membr. Sci. 320:240-247. https://doi.org/10.1016/j.memsci.2008.04.007
  42. Li F, A Yuasa, K Ebie, Y Azuma, T Hagishita and Y Matsui. 2002. Factors affecting the adsorption capacity of dissolved organic matter onto activated carbon: Modified isotherm analysis. Water Res. 36:4592-4604. https://doi.org/10.1016/S0043-1354(02)00174-4
  43. Li H and G Pan. 2014. Enhanced and continued degradation of microcystins using microorganisms obtained through natural media. J. Microbiol. Methods 96:73-80. https://doi.org/10.1016/j.mimet.2013.11.005
  44. Li J, L Cao, Y Yuan, R Wang, Y Wen and J Man. 2018. Comparative study for microcystin-LR sorption onto biochars produced from various plant- and animal-wastes at different pyrolysis temperatures: Influencing mechanisms of biochar properties. Bioresour. Technol. 247:794-803. https://doi.org/10.1016/j.biortech.2017.09.120
  45. Li J, R Li and J Li. 2017. Current research scenario for microcystins biodegradation - A review on fundamental knowledge, application prospects and challenges. Sci. Total Environ. 595:615-632. https://doi.org/10.1016/j.scitotenv.2017.03.285
  46. Li L, Y Qiu, J Huang, F Li and GD Sheng. 2014. Mechanisms and factors influencing adsorption of microcystin-LR on biochars. Water Air Soil Pollut. 225:2220. https://doi.org/10.1007/s11270-014-2220-6
  47. Li Q, VL Snoeyink, BJ Mariaas and C Campos. 2003. Elucidating competitive adsorption mechanisms of atrazine and NOM using model compounds. Water Res. 37:773-784. https://doi.org/10.1016/S0043-1354(02)00390-1
  48. Liu G, H Zheng, X Zhai and Z Wang. 2018. Characteristics and mechanisms of microcystin-LR adsorption by giant reed-derived biochars: Role of minerals, pores, and functional groups. J. Clean. Prod. 176:463-473. https://doi.org/10.1016/j.jclepro.2017.12.156
  49. Liu X, Z Chen, N Zhou, J Shen and M Ye. 2010. Degradation and detoxification of microcystin-LR in drinking water by sequential use of UV and ozone. J. Environ. Sci. 22:1897-1902. https://doi.org/10.1016/S1001-0742(09)60336-3
  50. Liu Y, Q Cao, F Luo and J Chen. 2009. Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae. J. Hazard. Mater. 163:931-938. https://doi.org/10.1016/j.jhazmat.2008.07.046
  51. MacKintosh C, KA Beattie, S Klumpp, P Cohen and GA Codd. 1990. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS lett. 264: 187-192. https://doi.org/10.1016/0014-5793(90)80245-E
  52. Mahmoodi NM, F Najafi and A Neshat. 2013. Poly (amidoamine-co-acrylic acid) copolymer: Synthesis, characterization and dye removal ability. Ind. Crop Prod. 42:119-125. https://doi.org/10.1016/j.indcrop.2012.05.025
  53. Mahmoodi NM, U Sadeghi, A Maleki, B Hayati and F Najafi. 2014. Synthesis of cationic polymeric adsorbent and dye removal isotherm, kinetic and thermodynamic. J. Ind. Eng. Chem. 20:2745-2753. https://doi.org/10.1016/j.jiec.2013.11.002
  54. Mashile PP, A Mpupa and PN Nomngongo. 2018. Adsorptive removal of microcystin-LR from surface and wastewater using tyre-based powdered activated carbon: Kinetics and isotherms. Toxicon 145:25-31. https://doi.org/10.1016/j.toxicon.2018.02.044
  55. Mbukwa EA, TAM Msagati and BB Mamba. 2012. Quantitative variations of intracellular microcystin-LR,-RR and-YR in samples collected from four locations in Hartbeespoort Dam in North West Province(South Africa) during the 2010/2011 summer season. Int. J. Environ. Res. Pub. Health 9:3484-3505. https://doi.org/10.3390/ijerph9103484
  56. Melaram R, AR Newton and J Chafin. 2022. Microcystin contamination and toxicity: Implications for agriculture and public health. Toxins 14:350. https://doi.org/10.3390/toxins14050350
  57. Merel S, D Walker, R Chicana, S Snyder, E Baures and O Thomas. 2013. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 59:303-327. https://doi.org/10.1016/j.envint.2013.06.013
  58. Moreno-Castilla C. 2004. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42:83-94. https://doi.org/10.1016/j.carbon.2003.09.022
  59. Newcombe G, M Drikas and R Hayes. 1997. Influence of characterised natural organic material on activated carbon adsorption: II. Effect on pore volume distribution and adsorption of 2-methylisoborneol. Water Res. 31:1065-1073. https://doi.org/10.1016/S0043-1354(96)00325-9
  60. Nille OS, AS Patil, RD Waghmare, VM Naik, DB Gunjal, GB Kolekar and AH Gore. 2021. Valorization of tea waste for multifaceted applications: A step toward green and sustainable development. pp. 219-236. In: Valorization of Agri-Food Wastes and By-Products. Recent Trends, Innovations and Sustainability Challenges(Bhat R ed.). Academic Press. London, United Kingdom. https://doi.org/10.1016/B978-0-12-824044-1.00046-5
  61. Nyakairu GWA, CB Nagawa and J Mbabazi. 2010. Assessment of cyanobacteria toxins in freshwater fish: A case study of Murchison Bay (Lake Victoria) and Lake Mburo, Uganda. Toxicon 55:939-946. https://doi.org/10.1016/j.toxicon.2009.07.024
  62. O'Neil J, T Davis, M Burford and C Gobler. 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313-334. https://doi.org/10.1016/j.hal.2011.10.027
  63. Paerl HW, RS Fulton, PH Moisander and J Dyble. 2001. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J. 1:139109. https://doi.org/10.1100/tsw.2001.16
  64. Palagama DSW, AM Devasurendra, D Baliu-Rodriguez, JR Kirchhoff and D Isailovic. 2019. Treated rice husk as a recyclable sorbent for the removal of microcystins from water. Sci. Total Environ. 666:1292-1300. https://doi.org/10.1016/j.scitotenv.2019.02.042
  65. Park JA, SM Jung, IG Yi, JW Choi, SB Kim and SH Lee. 2017. Adsorption of microcystin-LR on mesoporous carbons and its potential use in drinking water source. Chemosphere 177:15-23. https://doi.org/10.1016/j.chemosphere.2017.02.150
  66. Park JA, SM Jung, JW Choi, JH Kim, S Hong and SH Lee. 2018. Mesoporous carbon for efficient removal of microcystin-LR in drinking water sources, Nak-Dong River, South Korea: Application to a field-scale drinking water treatment plant. Chemosphere 193:883-891. https://doi.org/10.1016/j.chemosphere.2017.11.092
  67. Park YH, HS Kim, H Kim, J Park, S Kim and YE Choi. 2022a. Direct removal of harmful cyanobacterial species by adsorption process and their potential use as a lipid source. Chem. Eng. J. 427:131727. https://doi.org/10.1016/j.cej.2021.131727
  68. Park YH, S Kim and YE Choi. 2022b. Remediation of Microcystis aeruginosa blooming water using a reusable polyethylene-mine-polyvinyl chloride composite adsorbent. J. Water Process. Eng. 49:103060. https://doi.org/10.1016/j.jwpe.2022.103060
  69. Park YH, S Kim, HS Kim, C Park and YE Choi. 2020. Adsorption strategy for removal of harmful Cyanobacterial species Microcystis aeruginosa using chitosan fiber. Sustainability 12:4587. https://doi.org/10.3390/su12114587
  70. Pavagadhi S, ALL Tang, M Sathishkumar, KP Loh and R Balasubramanian. 2013. Removal of microcystin-LR and microcystinRR by graphene oxide: Adsorption and kinetic experiments. Water Res. 47:4621-4629. https://doi.org/10.1016/j.watres.2013.04.033
  71. Pelekani C and V Snoeyink. 1999. Competitive adsorption in natural water: role of activated carbon pore size. Water Res. 33:1209-1219. https://doi.org/10.1016/S0043-1354(98)00329-7
  72. Pendleton P, R Schumann and SH Wong. 2001. Microcystin-LR adsorption by activated carbon. J. Colloid Interface Sci. 240:1-8. https://doi.org/10.1006/jcis.2001.7616
  73. Pietsch J, K Bornmann and W Schmidt. 2002. Relevance of intra-and extracellular cyanotoxins for drinking water treatment. Acta Hydrochim. Hydrobiol. 30:7-15. https://doi.org/10.1002/1521-401X(200207)30:1<7::AID-AHEH7>3.0.CO;2-W
  74. Poste AE, RE Hecky and SJ Guildford. 2011. Evaluating microcystin exposure risk through fish consumption. Environ. Sci. Technol. 45:5806-5811. https://doi.org/10.1021/es200285c
  75. Rastogi RP, RP Sinha and A Incharoensakdi. 2014. The cyanotoxin-microcystins: current overview. Rev. Environ. Sci. Bio-Technol. 13:215-249. https://doi.org/10.1007/s11157-014-9334-6
  76. Rodriguez E, ME Majado, J Meriluoto and JL Acero. 2007. Oxidation of microcystins by permanganate: reaction kinetics and implications for water treatment. Water Res. 41:102-110. https://doi.org/10.1016/j.watres.2006.10.004
  77. Sathishkumar M, S Pavagadhi, A Mahadevan, R Balasubramanian and D Burger. 2010a. Removal of a potent cyanobacterial hepatotoxin by peat. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 45:1877-1884. https://doi.org/10.1080/10934529.2010.520598
  78. Sathishkumar M, S Pavagadhi, K Vijayaraghavan, R Balasubramanian and S Ong. 2010b. Experimental studies on removal of microcystin-LR by peat. J. Hazard. Mater. 184:417-424. https://doi.org/10.1016/j.jhazmat.2010.08.051
  79. Schreiber B, T Brinkmann, V Schmalz and E Worch. 2005. Adsorption of dissolved organic matter onto activated carbon - the influence of temperature, absorption wavelength, and molecular size. Water Res. 39:3449-3456. https://doi.org/10.1016/j.watres.2005.05.050
  80. Shi W, W Tan, L Wang and G Pan. 2016. Removal of Microcystis aeruginosa using cationic starch modified soils. Water Res. 97:19-25. https://doi.org/10.1016/j.watres.2015.06.029
  81. Song HJ, R Gurav, SK Bhatia, EB Lee, HJ Kim, YH Yang, E Kan, HH Kim, SH Lee and YK Choi. 2021. Treatment of microcystin-LR cyanotoxin contaminated water using Kentucky bluegrass-derived biochar. J. Water Process. Eng. 41:102054. https://doi.org/10.1016/j.jwpe.2021.102054
  82. Svircev Z, D Lalic, G Bojadzija Savic, N Tokodi, D Drobac Backovic, L Chen, J Meriluoto and GA Codd. 2019. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol. 93:2429-2481. https://doi.org/10.1007/s00204-019-02524-4
  83. Tran CD, S Duri, A Delneri and M Franko. 2013. Chitosan-cellulose composite materials: Preparation, characterization and application for removal of microcystin. J. Hazard. Mater. 355-366. https://doi.org/10.1016/j.jhazmat.2013.02.046
  84. Valeria AM, EJ Ricardo, P Stephan and WD Alberto. 2006. Degradation of microcystin-RR by Sphingomonas sp. CBA4 isolated from San Roque reservoir (Cordoba-Argentina). Biodegradation 17:447. https://doi.org/10.1007/s10532-005-9015-9
  85. Vlad S, WB Anderson, S Peldszus and PM Huck. 2014. Removal of the cyanotoxin anatoxin-a by drinking water treatment processes: A review. J. Water Health 12:601-617. https://doi.org/10.2166/wh.2014.018
  86. Volesky B and Z Holan. 1995. Biosorption of heavy metals. Biotechnol. Prog. 11:235-250. https://doi.org/10.1021/bp00033a001
  87. Volesky B. 2007. Biosorption and me. Water Res. 41:4017-4029. https://doi.org/10.1016/j.watres.2007.05.062
  88. Wagner ND, E Quach, S Buscho, A Ricciardelli, A Kannan, SW Naung, G Phillip, B Sheppard, L Ferguson, A Allen, C Sharon, JR Duke, RB Taylor, BJ Austin, JK Stovall, BE Haggard, CK Chambliss, BW Brooks and JT Scott. 2021. Nitrogen form, concentration, and micronutrient availability affect microcystin production in cyanobacterial blooms. Harmful Algae 103:102002. https://doi.org/10.1016/j.hal.2021.102002
  89. Wang X, M Utsumi, Y Yang, D Li, Y Zhao, Z Zhang, C Feng, N Sugiura and JJ Cheng. 2015. Degradation of microcystin-LR by highly efficient AgBr/Ag3PO4/TiO2 heterojunction photocatalyst under simulated solar light irradiation. Appl. Surf. Sci. 325:1-12. https://doi.org/10.1016/j.apsusc.2014.10.078
  90. Wei L and J Lu. 2021. Adsorption of microcystin-LR by rice straw biochars with different pyrolysis temperatures. Environ. Technol. Innov. 23:101609. https://doi.org/10.1016/j.eti.2021.101609
  91. Won SW, P Kotte, W Wei, A Lim and YS Yun. 2014. Biosorbents for recovery of precious metals. Bioresour. Technol. 160:203-212. https://doi.org/10.1016/j.biortech.2014.01.121
  92. Won SW, SB Choi and YS Yun. 2006. Performance and mechanism in binding of Reactive Orange 16 to various types of sludge. Biochem. Eng. J. 28:208-214. https://doi.org/10.1016/j.bej.2005.11.006
  93. Won SW, SB Choi and YS Yun. 2013. Binding sites and mechanisms of cadmium to the dried sewage sludge biomass. Chemosphere 93:146-151. https://doi.org/10.1016/j.chemosphere.2013.05.011
  94. Wu W, M Yang, Q Feng, K McGrouther, H Wang, H Lu and Y Chen. 2012. Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenerg. 47:268-276. https://doi.org/10.1016/j.biombioe.2012.09.034
  95. Wurtsbaugh WA, HW Paerl and WK Dodds. 2019. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdiscip. Rev.-Water 6:e1373. https://doi.org/10.1002/wat2.1373
  96. Xiang L, YW Li, BL Liu, HM Zhao, H Li, QY Cai, CH Mo, MH Wong and QX Li. 2019. High ecological and human health risks from microcystins in vegetable fields in southern China. Environ. Int. 133:105142. https://doi.org/10.1016/j.envint.2019.105142
  97. Yang E, C Yao, Y Liu, C Zhang, L Jia, D Li, Z Fu, D Sun, SR Kirk and D Yin. 2018. Bamboo-derived porous biochar for efficient adsorption removal of dibenzothiophene from model fuel. Fuel 211:121-129. https://doi.org/10.1016/j.fuel.2017.07.099
  98. Yang F, F Huang, H Feng, J Wei, IY Massey, G Liang, F Zhang, L Yin, S Kacew, X Zhang and Y Pu. 2020. A complete route for biodegradation of potentially carcinogenic cyanotoxin microcystin-LR in a novel indigenous bacterium. Water Res. 174:115638. https://doi.org/10.1016/j.watres.2020.115638
  99. Zhan MM and Y Hong. 2022. Recent advances in technologies for removal of microcystins in water: A review. Curr. Pollut. Rep. 8:113-127. https://doi.org/10.1007/s40726-022-00215-w
  100. Zhang H, G Zhu, X Jia, Y Ding, M Zhang, Q Gao, C Hu and S Xu. 2011. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan. J. Environ. Sci. 23:1983-1988. https://doi.org/10.1016/S1001-0742(10)60676-6
  101. Zhang J, J Liu and R Liu. 2015. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour. Technol. 176:288-291. https://doi.org/10.1016/j.biortech.2014.11.011
  102. Zhang X and L Jiang. 2011. Fabrication of novel rattle-type magnetic mesoporous carbon microspheres for removal of microcystins. J. Mater. Chem. 21:10653-10657. https://doi.org/10.1039/C1JM12263K
  103. Zhu S, D Yin, N Gao, S Zhou, Z Wang and Z Zhang. 2016. Adsorption of two microcystins onto activated carbon: Equilibrium, kinetic, and influential factors. Desalin. Water Treat. 57:23666-23674. https://doi.org/10.1080/19443994.2015.1137492