과제정보
The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (IF2/PSAU/2022/01/21994).
참고문헌
- Ansari, R. and Arash, B. (2013), "Nonlocal Flugge shell model for vibrations of double-walled carbon nanotubes with different boundary conditions", J. Appl. Mech., 80(2), 021006. https://doi.org/10.1115/1.4007432.
- Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., 3(4), 193. https://doi.org/10.12989/anr.2015.3.4.193.
- Duan, W.H., Wang, C.M. and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics", J. Appl. Phys., 101(2), 024305. https://doi.org/10.1063/1.2423140.
- Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., 5(2), 179. https://doi.org/10.12989/anr.2017.5.2.179.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface-waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer New York, NY, USA.
- Fatahi-Vajari, A., Azimzadeh, Z. and Hussain, M. (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203.
- Fauzi, M.A., Arshad, M.F., Nor, N.M. and Ghazali, E. (2022), "Sustainable controlled low-strength material: Plastic properties and strength optimization", Comput. Concrete, 30(6), 393-407. https://doi.org/10.12989/cac.2022.30.6.393.
- Gupta, S.S., Bosco, F.G. and Batra, R.C. (2010), "Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration", Comput. Mater. Sci., 47(4), 1049-1059. https://doi.org/10.1016/j.commatsci.2009.12.007.
- Kepenek, E., Korkmaz K.A. and Gencel, Z. (2023), "Comparative study on rapid seismic risk prioritization for reinforced concrete buildings in Antalya, Turkiye", Comput. Concrete, 31(3), 185-195. https://doi.org/10.12989/cac.2023.31.3.185.
- Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N. and Treacy. M.M.J. (1998), "Young's modulus of single-walled nanotubes", Phys. Rev. B: Condens. Matter Mater. Phys., 58(20), 14013-14019. https://doi.org/10.1103/PhysRevB.58.14013.
- Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
- Liang, S.D. (2004), "Intrinsic properties of electronic structure in commensurate double-wall carbon nanotubes", Phys. B: Condens. Matter, 352(1-4), 305-311. https://doi.org/10.1016/j.physb.2004.08.002.
- Liu, Y., Wang, J., Hu, J., Qin, Z. and Chu, F. (2022), "Multiple internal resonances of rotating composite cylindrical shells under varying temperature fields", Appl. Math. Mech., 43(10), 1543-1554. https://doi.org/10.1007/s10483-022-2904-9.
- Majeed, S.S., Haido, J.H., Atrushi, D.S., Al-Kamaki, Y., Dinkha, Y.Z., Saadullah, S.T. and Tayeh, B.A. (2021), "Properties of self-compacted concrete incorporating basalt fibers: Experimental study and gene expression programming (GEP) analysis", Comput. Concrete, 28(5), 451-463. https://doi.org/10.12989/cac.2021.28.5.451.
- Miyamoto, Y., Saito, S. and Tomanek, D. (2001), "Electronic interwall interactions and charge redistribution in multiwall nanotubes", Phys. Rev. B, 65(4), 041402. https://doi.org/10.1103/PhysRevB.65.041402.
- Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.
- Natsuki, T., Endo, M. and Tsuda, H. (2006), "Vibration analysis of embedded carbon nanotubes using wave propagation approach", J. Appl. Phys., 99(3), 034311. https://doi.org/10.1063/1.2170418.
- Qin, Z., Pang, X., Safaei, B. and Chu, F. (2019), "Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions", Compos. Struct., 220, 847-860. https://doi.org/10.1016/j.compstruct.2019.04.046.
- Qin, Z., Zhao, S., Pang, X., Safaei, B. and Chu, F. (2020), "A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions", Int. J. Mech. Sci., 170, 105341. https://doi.org/10.1016/j.ijmecsci.2019.105341.
- Rafiee, M., Yang, J. and Kitipornchai. S. (2013), "Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers", Compos. Struct., 96, 716-725. https://doi.org/10.1016/j.compstruct.2012.10.005.
- Rakrak, K., Zidour, M., Heireche, H., Bousahla, A.A. and Chemi, A. (2016), "Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory", Adv. Nano Res., 4(1), 31-44. https://doi.org/10.12989/anr.2016.4.1.031.
- Rezaiee Pajand, M., Sobhani, E. and Masoodi, A. (2022), "Vibrational behavior of exponentially graded joined conical-conical shells", Steel Compos. Struct., 43(5), 603-623. https://doi.org/10.12989/scs.2022.43.5.603.
- Sobhani, E. (2023), "Vibrational characteristics of fastening of a spherical shell with a coupled conical-conical shells strengthened with nanocomposite sandwiches contained agglomerated CNT face layers and GNP core under spring boundary conditions", Eng. Anal. Bound. Elem., 146, 362-387. https://doi.org/10.1016/j.enganabound.2022.10.035.
- Sobhani, E. and Safaei, B. (2023), "Vibrational features of graphene oxide powder nanocomposite coupled conical-cylindrical shells applicable for aerospace structures under various boundary conditions", Eng. Anal. Bound. Elem., 151, 423-438. https://doi.org/10.1016/j.enganabound.2023.03.020.
- Sobhani, E., Koohestani, M., Civalek, O . and Avcar, M. (2023), "Natural frequency investigation of graphene oxide powder nanocomposite cylindrical shells surrounded by Winkler/Pasternak/Kerr elastic foundations with a focus on various boundary conditions", Eng. Anal. Bound. Elem., 149, 38-51. https://doi.org/10.1016/j.enganabound.2023.01.012.
- Sobhani, E., Masoodi, A.R. and Ahmadi-Pari, A.R. (2022), "Wave frequency responses estimate of the nanocomposite linked hemispherical-conical shell underwater-like bodies with the impacts of two types of graphene-based nanofillers", Ocean Eng., 262, 112329. https://doi.org/10.1016/j.oceaneng.2022.112329.
- Sun, S., Cao, D. and Chu, S. (2013), "Free vibration analysis of thin rotating cylindrical shells using wave propagation approach", Arch. Appl. Mech., 83, 521-531. https://doi.org/10.1007/s00419-012-0701-x.
- Treacy, M.J., Ebbesen, T.W. and Gibson, J.M. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nat., 381(6584), 678-680. https://doi.org/10.1038/381678a0.
- Vieira, A.A., Melo, G.S.S. and Miranda, A.C. (2020), "RC deep beams with unconventional geometries: Experimental and numerical analyses", Comput. Concrete, 26(4), 351-365. https://doi.org/10.12989/cac.2020.26.4.351.
- Yoon, J., Ru, C.Q. and Mioduchowski, A. (2005), "Terahertz vibration of short carbon nanotubes modeled as Timoshenko beams", J. Appl. Mech., 72(1), 10-17. https://doi.org/10.1115/1.1795814.
- Zamani, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.
- Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001), "Vibration analysis of thin cylindrical shells using wave propagation approach", J. Sound Vib., 239(3), 397-403. https://doi.org/10.1006/jsvi.2000.3139.
- Zhang, Y.Y., Wang, C.M. and Tan, V.B.C. (2009), "Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics", Adv. Appl. Math. Mech., 1(1), 89-106.