DOI QR코드

DOI QR Code

Recommendation for the modelling of Donnell shell: The relationship between non-local parameter and frequency

  • Mohamed A. Khadimallah (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Muzamal Hussain (Department of Mathematics, Govt. College University Faisalabad) ;
  • Elimam Ali (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Sehar Asghar (Department of Mathematics, Govt. College University Faisalabad) ;
  • Abdelouhed Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2023.03.30
  • Accepted : 2023.04.27
  • Published : 2023.08.25

Abstract

The vibration analysis of armchair, zigzag and chiral double-walled carbon nanotubes has been developed by inserting the nonlocal theory of elasticity into thin shell theory. First Donnell shell theory is employed while exercising wave propagation approach. Scale effects are realized by using different values of nonlocal parameters under certain boundary conditions. The natural frequencies have been investigated and displayed for various non-local parameters. It is noticed that on increasing nonlocal parameter, the frequency curve tends to decrease. The frequency estimates of clamped-free boundary condition are less than those of clamped-clamped and simply supported computations. The frequency comparisons are presented for armchair, zigzag and chiral nanotubes. The software MATLAB is used to extract the frequencies of double walled carbon nanotubes.

Keywords

Acknowledgement

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (IF2/PSAU/2022/01/21994).

References

  1. Ansari, R. and Arash, B. (2013), "Nonlocal Flugge shell model for vibrations of double-walled carbon nanotubes with different boundary conditions", J. Appl. Mech., 80(2), 021006. https://doi.org/10.1115/1.4007432.
  2. Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., 3(4), 193. https://doi.org/10.12989/anr.2015.3.4.193.
  3. Duan, W.H., Wang, C.M. and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics", J. Appl. Phys., 101(2), 024305. https://doi.org/10.1063/1.2423140.
  4. Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., 5(2), 179. https://doi.org/10.12989/anr.2017.5.2.179.
  5. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface-waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
  6. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer New York, NY, USA.
  7. Fatahi-Vajari, A., Azimzadeh, Z. and Hussain, M. (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203.
  8. Fauzi, M.A., Arshad, M.F., Nor, N.M. and Ghazali, E. (2022), "Sustainable controlled low-strength material: Plastic properties and strength optimization", Comput. Concrete, 30(6), 393-407. https://doi.org/10.12989/cac.2022.30.6.393.
  9. Gupta, S.S., Bosco, F.G. and Batra, R.C. (2010), "Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration", Comput. Mater. Sci., 47(4), 1049-1059. https://doi.org/10.1016/j.commatsci.2009.12.007.
  10. Kepenek, E., Korkmaz K.A. and Gencel, Z. (2023), "Comparative study on rapid seismic risk prioritization for reinforced concrete buildings in Antalya, Turkiye", Comput. Concrete, 31(3), 185-195. https://doi.org/10.12989/cac.2023.31.3.185.
  11. Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N. and Treacy. M.M.J. (1998), "Young's modulus of single-walled nanotubes", Phys. Rev. B: Condens. Matter Mater. Phys., 58(20), 14013-14019. https://doi.org/10.1103/PhysRevB.58.14013.
  12. Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
  13. Liang, S.D. (2004), "Intrinsic properties of electronic structure in commensurate double-wall carbon nanotubes", Phys. B: Condens. Matter, 352(1-4), 305-311. https://doi.org/10.1016/j.physb.2004.08.002.
  14. Liu, Y., Wang, J., Hu, J., Qin, Z. and Chu, F. (2022), "Multiple internal resonances of rotating composite cylindrical shells under varying temperature fields", Appl. Math. Mech., 43(10), 1543-1554. https://doi.org/10.1007/s10483-022-2904-9.
  15. Majeed, S.S., Haido, J.H., Atrushi, D.S., Al-Kamaki, Y., Dinkha, Y.Z., Saadullah, S.T. and Tayeh, B.A. (2021), "Properties of self-compacted concrete incorporating basalt fibers: Experimental study and gene expression programming (GEP) analysis", Comput. Concrete, 28(5), 451-463. https://doi.org/10.12989/cac.2021.28.5.451.
  16. Miyamoto, Y., Saito, S. and Tomanek, D. (2001), "Electronic interwall interactions and charge redistribution in multiwall nanotubes", Phys. Rev. B, 65(4), 041402. https://doi.org/10.1103/PhysRevB.65.041402.
  17. Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.
  18. Natsuki, T., Endo, M. and Tsuda, H. (2006), "Vibration analysis of embedded carbon nanotubes using wave propagation approach", J. Appl. Phys., 99(3), 034311. https://doi.org/10.1063/1.2170418.
  19. Qin, Z., Pang, X., Safaei, B. and Chu, F. (2019), "Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions", Compos. Struct., 220, 847-860. https://doi.org/10.1016/j.compstruct.2019.04.046.
  20. Qin, Z., Zhao, S., Pang, X., Safaei, B. and Chu, F. (2020), "A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions", Int. J. Mech. Sci., 170, 105341. https://doi.org/10.1016/j.ijmecsci.2019.105341.
  21. Rafiee, M., Yang, J. and Kitipornchai. S. (2013), "Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers", Compos. Struct., 96, 716-725. https://doi.org/10.1016/j.compstruct.2012.10.005.
  22. Rakrak, K., Zidour, M., Heireche, H., Bousahla, A.A. and Chemi, A. (2016), "Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory", Adv. Nano Res., 4(1), 31-44. https://doi.org/10.12989/anr.2016.4.1.031.
  23. Rezaiee Pajand, M., Sobhani, E. and Masoodi, A. (2022), "Vibrational behavior of exponentially graded joined conical-conical shells", Steel Compos. Struct., 43(5), 603-623. https://doi.org/10.12989/scs.2022.43.5.603.
  24. Sobhani, E. (2023), "Vibrational characteristics of fastening of a spherical shell with a coupled conical-conical shells strengthened with nanocomposite sandwiches contained agglomerated CNT face layers and GNP core under spring boundary conditions", Eng. Anal. Bound. Elem., 146, 362-387. https://doi.org/10.1016/j.enganabound.2022.10.035.
  25. Sobhani, E. and Safaei, B. (2023), "Vibrational features of graphene oxide powder nanocomposite coupled conical-cylindrical shells applicable for aerospace structures under various boundary conditions", Eng. Anal. Bound. Elem., 151, 423-438. https://doi.org/10.1016/j.enganabound.2023.03.020.
  26. Sobhani, E., Koohestani, M., Civalek, O . and Avcar, M. (2023), "Natural frequency investigation of graphene oxide powder nanocomposite cylindrical shells surrounded by Winkler/Pasternak/Kerr elastic foundations with a focus on various boundary conditions", Eng. Anal. Bound. Elem., 149, 38-51. https://doi.org/10.1016/j.enganabound.2023.01.012.
  27. Sobhani, E., Masoodi, A.R. and Ahmadi-Pari, A.R. (2022), "Wave frequency responses estimate of the nanocomposite linked hemispherical-conical shell underwater-like bodies with the impacts of two types of graphene-based nanofillers", Ocean Eng., 262, 112329. https://doi.org/10.1016/j.oceaneng.2022.112329.
  28. Sun, S., Cao, D. and Chu, S. (2013), "Free vibration analysis of thin rotating cylindrical shells using wave propagation approach", Arch. Appl. Mech., 83, 521-531. https://doi.org/10.1007/s00419-012-0701-x.
  29. Treacy, M.J., Ebbesen, T.W. and Gibson, J.M. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nat., 381(6584), 678-680. https://doi.org/10.1038/381678a0.
  30. Vieira, A.A., Melo, G.S.S. and Miranda, A.C. (2020), "RC deep beams with unconventional geometries: Experimental and numerical analyses", Comput. Concrete, 26(4), 351-365. https://doi.org/10.12989/cac.2020.26.4.351.
  31. Yoon, J., Ru, C.Q. and Mioduchowski, A. (2005), "Terahertz vibration of short carbon nanotubes modeled as Timoshenko beams", J. Appl. Mech., 72(1), 10-17. https://doi.org/10.1115/1.1795814.
  32. Zamani, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.
  33. Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001), "Vibration analysis of thin cylindrical shells using wave propagation approach", J. Sound Vib., 239(3), 397-403. https://doi.org/10.1006/jsvi.2000.3139.
  34. Zhang, Y.Y., Wang, C.M. and Tan, V.B.C. (2009), "Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics", Adv. Appl. Math. Mech., 1(1), 89-106.