참고문헌
- Abasi, A.K., Khader, A.T., Al-Betar, M.A., Naim, S., Makhadmeh, S.N. and Alyasseri, Z.A.A. (2020), "Link-based multi-verse optimizer for text documents clustering", Appl. Soft Comput., 87, 106002. https://doi.org/10.1016/j.asoc.2019.106002.
- ACI (1995), 318-95: Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, MI, USA.
- Adnan, R.M., Dai, H.L., Kuriqi, A., Kisi, O. and Zounemat-Kermani, M. (2023a), "Improving drought modeling based on new heuristic machine learning methods", Ain Shams Eng. J., 14(10), 102168. https://doi.org/10.1016/j.asej.2023.102168.
- Adnan, R.M., Dai, H.L., Mostafa, R.R., Islam, A.R.M.T., Kisi, O., Elbeltagi, A. and Zounemat-Kermani, M. (2023b), "Application of novel binary optimized machine learning models for monthly streamflow prediction", Appl. Water Sci., 13(5), 110. https://doi.org/10.1007/s13201-023-01913-6.
- Adnan, R.M., Mostafa, R.R., Dai, H.L., Heddam, S., Kuriqi, A. and Kisi, O. (2023c), "Pan evaporation estimation by relevance vector machine tuned with new metaheuristic algorithms using limited climatic data", Eng. Appl. Comput. Fluid Mech., 17(1), 2192258. https://doi.org/10.1080/19942060.2023.2192258.
- Al-Salloum, Y.A., Shah, A.A., Abbas, H., Alsayed, S.H., Almusallam, T.H. and Al-Haddad, M.S. (2012), "Prediction of compressive strength of concrete using neural networks", Comput. Concrete, 10(2), 197-217. https://doi.org/10.12989/cac.2012.10.2.197.
- Armaghani, D.J., Hatzigeorgiou, G.D., Karamani, C., Skentou, A., Zoumpoulaki, I. and Asteris, P.G. (2019), "Soft computing-based techniques for concrete beams shear strength", Proc. Struct. Integr., 17, 924-933. https://doi.org/10.1016/j.prostr.2019.08.123.
- Ashteyat, A.M. and Ismeik, M. (2018), "Predicting residual compressive strength of self-compacted concrete under various temperatures and relative humidity conditions by artificial neural networks", Comput. Concrete, 21(1), 47-54. https://doi.org/10.12989/cac.2018.21.1.047.
- Asteris, P.G., Ashrafian, A. and Rezaie-Balf, M. (2019), "Prediction of the compressive strength of self-compacting concrete using surrogate models", Comput. Concrete, 24(2), 137-150. https://doi.org/10.12989/cac.2019.24.2.137.
- Asteris, P.G., Mamou, A., Hajihassani, M., Hasanipanah, M., Koopialipoor, M., Le, T.T., Kardani, N., Armaghani, D.J. (2021), "Soft computing based closed form equations correlating L and N-type Schmidt hammer rebound numbers of rocks", Transp. Geotech., 29, 100588. https://doi.org/10.1016/j.trgeo.2021.100588.
- Asteris, P.G. and Mokos, V.G. (2020), "Concrete compressive strength using artificial neural networks", Neural Comput. Appl., 32(15), 11807-11826. https://doi.org/10.1007/s00521-019-04663-2.
- Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Expert Syst. Appl., 38(8), 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156.
- Barrow, J.D., Davies, P.C.W. and Harper Jr, C.L. (2004), Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity, Cambridge University Press, Cambridge, UK.
- Basyigit, C., Akkurt, I., Kilincarslan, S. and Beycioglu, A. (2010), "Prediction of compressive strength of heavyweight concrete by ANN and FL models", Neural Comput. Appl., 19(4), 507-513. https://doi.org/10.1007/s00521-009-0292-9.
- Bilgehan, M. and Turgut, P. (2010), "The use of neural networks in concrete compressive strength estimation", Comput. Concrete, 7(3), 271-283. https://doi.org/10.12989/cac.2010.7.3.271.
- Bui, D.T., Moayedi, H., Kalantar, B., Osouli, A., Pradhan, B., Nguyen, H. and Rashid, A.S.A. (2019), "Harris hawks optimization: A novel swarm intelligence technique for spatial assessment of landslide susceptibility", Sensors, 19, 3590.
- Chopra, P., Sharma, R.K. and Kumar, M. (2016), "Prediction of compressive strength of concrete using artificial neural network and genetic programming", Adv. Mater. Sci. Eng., 2016, 1. https://doi.org/10.1155/2016/7648467.
- Dogan, B. and O lmez, T. (2015), "A new metaheuristic for numerical function optimization: Vortex Search algorithm", Informat. Sci., 293, 125-145. https://doi.org/10.1016/j.ins.2014.08.053.
- Dua, D. and Graff, C. (2017), "UCI machine learning repository", University of California, School of Information and Computer Science, Irvine, CA, USA. http://archive.ics.uci.edu/ml.
- Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463.
- Faris, H., Hassonah, M.A., Al-Zoubi, A.M., Mirjalili, S. and Aljarah, I. (2018), "A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture", Neural Comput. Appl., 30(8), 2355-2369. https://doi.org/10.1007/s00521-016-2818-2.
- Gazder, U., Al-Amoudi, O.S.B., Khan, S.M.S. and Maslehuddin, M. (2017), "Predicting compressive strength of bended cement concrete with ANNs", Comput. Concrete, 20(6), 627-634. https://doi.org/10.12989/cac.2017.20.6.627.
- Golafshani, E.M. and Pazouki, G. (2018), "Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method", Comput. Concrete, 22(4), 419-437. https://doi.org/10.12989/cac.2018.22.4.419.
- Gu, Y.T., Xu, Y.X., Moayedi, H., Zhao, J.W. and Le, B.N. (2022), "Slope stability prediction using ANFIS models optimized with metaheuristic science", Geomech. Eng., 31(4), https://doi.org/10.12989/gae.2022.31.4.339.
- Haykin, S. (1999), "Neural networks: A guided tour", Soft Comput. Intell. Syst. Theory Appl., 71, 1.
- Ikram, R.M.A., Dehrashid, A.A., Zhang, B., Chen, Z., Le, B.N. and Moayedi, H. (2023a), "A novel swarm intelligence: Cuckoo optimization algorithm (COA), and SailFish optimizer (SFO), in landslide susceptibility assessment", Stoch. Environ. Res. Risk Assess., 37(5), 1717-1743. https://doi.org/10.1007/s00477-022-02361-5.
- Ikram, R.M.A., Hazarika, B.B., Gupta, D., Heddam, S. and Kisi, O. (2023b), "Streamflow prediction in mountainous region using new machine learning and data preprocessing methods: A case study", Neural Comput. Appl., 35(12), 9053-9070. https://doi.org/10.1007/s00521-022-08163-8.
- Keshavarz, Z. and Torkian, H. (2018), "Application of ANN and ANFIS models in determining compressive strength of concrete", J. Soft Comput. Civil Eng., 2(1), 62-70. https://doi.org/10.22115/scce.2018.51114.
- Khademi, F. and Behfarnia, K. (2016), "Evaluation of concrete compressive strength using artificial neural network and multiple linear regression models", Int. J. Optim. Civil Eng., 6(3), 423-432.
- Khalilpourazari, S., Naderi, B. and Khalilpourazary, S. (2020), "Multi-objective stochastic fractal search: A powerful algorithm for solving complex multi-objective optimization problems", Soft Comput., 24(4), 3037-3066. https://doi.org/10.1007/s00500-019-04080-6.
- Kostic, S. and Vasovic, D. (2015), "Prediction model for compressive strength of basic concrete mixture using artificial neural networks", Neural Comput. Appl., 26(5), 1005-1024. https://doi.org/10.1007/s00521-014-1763-1.
- Lu, S., Koopialipoor, M., Asteris, P.G., Bahri, M. and Armaghani, D.J. (2020), "A novel feature selection approach based on tree models for evaluating the punching shear capacity of steel fiber-reinforced concrete flat slabs", Mater., 13(17), 3902. https://doi.org/10.3390/ma13173902.
- Mehta, P., Kumar, M. and Paulo, J.M. (2014), Concrete: Microstructure, Properties, and Materials, McGraw-Hill Education, New York, NY, USA.
- Mirjalili, S., Mirjalili, S.M. and Hatamlou, A. (2016), "Multi-verse optimizer: A nature-inspired algorithm for global optimization", Neural Comput. Appl., 27(2), 495-513. https://doi.org/10.1007/s00521-015-1870-7.
- Moayedi, H., Gor, M., Lyu, Z. and Bui, D.T. (2020), "Herding Behaviors of grasshopper and Harris hawk for hybridizing the neural network in predicting the soil compression coefficient", Measure., 152, 107389. https://doi.org/10.1016/j.measurement.2019.107389.
- Moayedi, H. and Mosallanezhad, M. (2017), "Uplift resistance of belled and multi-belled piles in loose sand", Measure., 109, 346-353. https://doi.org/10.1016/j.measurement.2017.06.001.
- Moayedi, H., Nguyen, H. and Kok Foong, L. (2021), "Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray wolf optimization for weight adjustment of neural network", Eng. Comput., 37, 1265-1275. https://doi.org/10.1007/s00366-019-00882-2.
- Mosallanezhad, M. and Moayedi, H. (2017), "Developing hybrid artificial neural network model for predicting uplift resistance of screw piles", Arab. J. Geosci., 10(22), 479. https://doi.org/10.1007/s12517-017-3285-5.
- Mosbah, H. and El-Hawary, M.E. (2018), "Optimized neural network parameters using stochastic fractal technique to compensate Kalman filter for power system-tracking-state estimation", IEEE Trans. Neural Network. Learn. Syst., 30(2), 379-388. https://doi.org/10.1109/TNNLS.2018.2839101.
- Neville, A.M. (1995), Properties of Concrete, Longman London, London, UK.
- Oreta, A.W.C. and Ongpeng, J. (2011), "Modeling the confined compressive strength of hybrid circular concrete columns using neural networks", Comput. Concrete, 8(5), 597-616. https://doi.org/10.12989/cac.2011.8.5.597.
- Ramachandra, R. and Mandal, S. (2020), "Prediction of fly ash concrete compressive strengths using soft computing techniques", Comput. Concrete, 25(1), 83-94. https://doi.org/10.12989/cac.2020.25.1.083.
- Rashid, K. and Rashid, T. (2017), "Fuzzy logic model for the prediction of concrete compressive strength by incorporating green foundry sand", Comput. Concrete, 19(6), 617-623. https://doi.org/10.12989/cac.2017.19.6.617.
- Sadowski, L., Nikoo, M. and Nikoo, M. (2018), "Concrete compressive strength prediction using the imperialist competitive algorithm", Comput. Concrete, 22(4), 355-363. https://doi.org/10.12989/cac.2018.22.4.355.
- Salimi, H. (2015), "Stochastic fractal search: A powerful metaheuristic algorithm", Knowled. Based Syst., 75, 1-18. https://doi.org/10.1016/j.knosys.2014.07.025.
- Shabani, S., Varamesh, S., Moayedi, H. and Le Van, B. (2023), "Modeling the susceptibility of an uneven-aged broad-leaved forest to snowstorm damage using spatially explicit machine learning", Environ. Sci. Pollut. Res., 30(12), 34203-34213. https://doi.org/10.1007/s11356-022-24660-8.
- Tahwia, A.M., Heniegal, A., Elgamal, M.S. and Tayeh, B.A. (2021), "The prediction of compressive strength and nondestructive tests of sustainable concrete by using artificial neural networks", Comput. Concrete, 27(1), 21-28. https://doi.org/10.12989/cac.2021.27.1.021.
- Tang, C.W., Lin, Y. and Kuo, S.F. (2007), "Investigation on correlation between pulse velocity and compressive strength of concrete using ANNs", Comput. Concrete, 4(6), 477-497. https://doi.org/10.12989/cac.2007.4.6.477.
- Tien Bui, D., Abdullahi, M.M., Ghareh, S., Moayedi, H. and Nguyen, H. (2021), "Fine-tuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete", Eng. Comput., 37, 701-712. https://doi.org/10.1007/s00366-019-00850-w.
- Tsai, H.C. (2016), "Modeling concrete strength with high-order neural networks", Neural Comput. Appl., 27(8), 2465-2473. https://doi.org/10.1007/s00521-015-2017-6.
- Tsai, H.C. and Liao, M.C. (2019), "Knowledge-based learning for modeling concrete compressive strength using genetic programming", Comput. Concrete, 23(4), 255-265. https://doi.org/10.12989/cac.2019.23.4.255.
- Wu, D., Liu, S., Moayedi, H., Cifci, M.A. and Le, B.N. (2022), "ANN-Incorporated satin bowerbird optimizer for predicting uniaxial compressive strength of concrete", Steel Compos. Struct., 45(2), 281-291. https://doi.org/10.12989/scs.2022.45.2.281.
- Wu, L., Wang, Z., Ma, D., Zhang, J., Wu, G., Wen, S., Zha, M. and Wu, L. (2022a), "A Continuous damage statistical constitutive model for sandstone and mudstone based on triaxial compression tests", Rock Mech. Rock Eng., 55(8), 4963-4978. https://doi.org/10.1007/s00603-022-02924-6.
- Wu, L.Y., Ma, D., Wang, Z. and Zhang, J.W. (2022b), "Prediction and prevention of mining-induced water inrush from rock strata separation space by 3D similarity simulation testing: a case study of Yuan Zigou coal mine, China", Geomech. Geophys. Geo-Energy Geo-Resour., 8(6), 202. https://doi.org/10.1007/s40948-022-00518-8.
- Wu, L., Ma, D., Wang, Z., Zhang, J., Zhang, B., Li, J., Liao, J. and Tong, J. (2023), "A deep CNN-based constitutive model for describing of statics characteristics of rock materials", Eng. Fract. Mech., 279, 109054. https://doi.org/10.1016/j.engfracmech.2023.109054.
- Xue, X. (2018), "Evaluation of concrete compressive strength based on an improved PSO-LSSVM model", Comput. Concrete, 21 (5), 505-511. https://doi.org/10.12989/cac.2018.21.5.505.
- Xue, X. and Zhou, H. (2018), "Neuro-fuzzy based approach for estimation of concrete compressive strength", Comput. Concrete, 21(6), 697-703. https://doi.org/10.12989/cac.2018.21.6.697.
- Yaprak, H., Karaci, A. and Demir, I. (2013), "Prediction of the effect of varying cure conditions and w/c ratio on the compressive strength of concrete using artificial neural networks", Neural Comput. Appl., 22(1), 133-141. https://doi.org/10.1007/s00521-011-0671-x.
- Zhao, Y., Moayedi, H., Bahiraei, M., Foong, L.K. (2020), "Employing TLBO and SCE for optimal prediction of the compressive strength of concrete", Smart. Struct. Syst., 26(6), 753-763. https://doi.org/10.12989/sss.2020.26.6.753.
- Zhou, G., Moayedi, H., Foong, L.K. (2021), "Teaching-learning-based metaheuristic scheme for modifying neural computing in appraising energy performance of building", Eng. Comput., 37, 3037-3048. https://doi.org/10.1007/s00366-020-00981-5.