DOI QR코드

DOI QR Code

Association of coffee consumption with type 2 diabetes and glycemic traits: a Mendelian randomization study

  • Hyun Jeong Cho (Department of Food and Nutrition, College of Human Ecology, Seoul National University) ;
  • Akinkunmi Paul Okekunle (Department of Food and Nutrition, College of Human Ecology, Seoul National University) ;
  • Ga-Eun Yie (Department of Food and Nutrition, College of Human Ecology, Seoul National University) ;
  • Jiyoung Youn (Department of Food and Nutrition, College of Human Ecology, Seoul National University) ;
  • Moonil Kang (Department of Medicine (Biomedical Genetics), Boston University School of Medicine) ;
  • Taiyue Jin (Division of Cancer Prevention, National Cancer Control Institute, National Cancer Center) ;
  • Joohon Sung (Complex Disease & Genome Epidemiology Branch, Department of Public Health, Graduate School of Public Health, Seoul National University) ;
  • Jung Eun Lee (Department of Food and Nutrition, College of Human Ecology, Seoul National University)
  • 투고 : 2022.08.09
  • 심사 : 2023.01.20
  • 발행 : 2023.08.01

초록

BACKGROUND/OBJECTIVES: Habitual coffee consumption was inversely associated with type 2 diabetes (T2D) and hyperglycemia in observational studies, but the causality of the association remains uncertain. This study tested a causal association of genetically predicted coffee consumption with T2D using the Mendelian randomization (MR) method. SUBJECTS/METHODS: We used five single-nucleotide polymorphisms (SNPs) as instrumental variables (IVs) associated with habitual coffee consumption in a previous genome-wide association study among Koreans. We analyzed the associations between IVs and T2D, fasting blood glucose (FBG), 2h-postprandial glucose (2h-PG), and glycated haemoglobin (HbA1C) levels. The MR results were further evaluated by standard sensitivity tests for possible pleiotropism. RESULTS: MR analysis revealed that increased genetically predicted coffee consumption was associated with a reduced prevalence of T2D; ORs per one-unit increment of log-transformed cup per day of coffee consumption ranged from 0.75 (0.62-0.90) for the weighted mode-based method to 0.79 (0.62-0.99) for Wald ratio estimator. We also used the inverse-variance-weighted method, weighted median-based method, MR-Egger method, and MR-PRESSO method. Similarly, genetically predicted coffee consumption was inversely associated with FBG and 2h-PG levels but not with HbA1c. Sensitivity measures gave similar results without evidence of pleiotropy. CONCLUSIONS: A genetic predisposition to habitual coffee consumption was inversely associated with T2D prevalence and lower levels of FBG and 2h-PG profiles. Our study warrants further exploration.

키워드

과제정보

This study was conducted with bioresources from the National Biobank of Korea, the Center for Disease Control and Prevention, Republic of Korea (KBN-2018-044).

참고문헌

  1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2019;157:107843.
  2. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, Song X, Ren Y, Shan PF. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep 2020;10:14790.
  3. Bommer C, Sagalova V, Heesemann E, Manne-Goehler J, Atun R, Barnighausen T, Davies J, Vollmer S. Global economic burden of diabetes in adults: projections from 2015 to 2030. Diabetes Care 2018;41:963-70. https://doi.org/10.2337/dc17-1962
  4. Cousin E, Duncan BB, Stein C, Ong KL, Vos T, Abbafati C, Abbasi-Kangevari M, Abdelmasseh M, Abdoli A, Abd-Rabu R, et al. Diabetes mortality and trends before 25 years of age: an analysis of the Global Burden of Disease Study 2019. Lancet Diabetes Endocrinol 2022;10:177-92. https://doi.org/10.1016/S2213-8587(21)00349-1
  5. Jiang X, Zhang D, Jiang W. Coffee and caffeine intake and incidence of type 2 diabetes mellitus: a meta-analysis of prospective studies. Eur J Nutr 2014;53:25-38. https://doi.org/10.1007/s00394-013-0603-x
  6. Bhupathiraju SN, Pan A, Manson JE, Willett WC, van Dam RM, Hu FB. Changes in coffee intake and subsequent risk of type 2 diabetes: three large cohorts of US men and women. Diabetologia 2014;57:1346-54. https://doi.org/10.1007/s00125-014-3235-7
  7. Kim Y, Je Y, Giovannucci E. Coffee consumption and all-cause and cause-specific mortality: a meta-analysis by potential modifiers. Eur J Epidemiol 2019;34:731-52. https://doi.org/10.1007/s10654-019-00524-3
  8. Cho HJ, Yoo JY, Kim AN, Moon S, Choi J, Kim I, Ko KP, Lee JE, Park SK. Association of coffee drinking with all-cause and cause-specific mortality in over 190,000 individuals: data from two prospective studies. Int J Food Sci Nutr 2022;73:513-21. https://doi.org/10.1080/09637486.2021.2002829
  9. Alperet DJ, Rebello SA, Khoo EY, Tay Z, Seah SS, Tai BC, Emady-Azar S, Chou CJ, Darimont C, van Dam RM. A randomized placebo-controlled trial of the effect of coffee consumption on insulin sensitivity: Design and baseline characteristics of the Coffee for METabolic Health (COMETH) study. Contemp Clin Trials Commun 2016;4:105-17. https://doi.org/10.1016/j.conctc.2016.06.013
  10. Ohnaka K, Ikeda M, Maki T, Okada T, Shimazoe T, Adachi M, Nomura M, Takayanagi R, Kono S. Effects of 16-week consumption of caffeinated and decaffeinated instant coffee on glucose metabolism in a randomized controlled trial. J Nutr Metab 2012;2012:207426.
  11. Alperet DJ, Rebello SA, Khoo EY, Tay Z, Seah SS, Tai BC, Tai ES, Emady-Azar S, Chou CJ, Darimont C, et al. The effect of coffee consumption on insulin sensitivity and other biological risk factors for type 2 diabetes: a randomized placebo-controlled trial. Am J Clin Nutr 2019;111:448-58. https://doi.org/10.1093/ajcn/nqz306
  12. Kempf K, Herder C, Erlund I, Kolb H, Martin S, Carstensen M, Koenig W, Sundvall J, Bidel S, Kuha S, et al. Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: a clinical trial. Am J Clin Nutr 2010;91:950-7. https://doi.org/10.3945/ajcn.2009.28548
  13. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat Med 2008;27:1133-63. https://doi.org/10.1002/sim.3034
  14. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 2013;37:658-65. https://doi.org/10.1002/gepi.21758
  15. Qian Y, Ye D, Huang H, Wu DJ, Zhuang Y, Jiang X, Mao Y. Coffee consumption and risk of stroke: a Mendelian randomization study. Ann Neurol 2020;87:525-32. https://doi.org/10.1002/ana.25693
  16. Wang X, Jia J, Huang T. Coffee types and type 2 diabetes mellitus: large-scale cross-phenotype association study and Mendelian randomization analysis. Front Endocrinol (Lausanne) 2022;13:818831.
  17. Kim AN, Cho HJ, Youn J, Jin T, Kang M, Sung J, Lee JE. Coffee consumption, genetic polymorphisms, and the risk of type 2 diabetes mellitus: a pooled analysis of four prospective cohort studies. Int J Environ Res Public Health 2020;17:5379.
  18. DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) ConsortiumAsian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) ConsortiumSouth Asian Type 2 Diabetes (SAT2D) ConsortiumMexican American Type 2 Diabetes (MAT2D) ConsortiumType 2 Diabetes Genetic Exploration by Nex-generation sequencing in muylti-Ethnic Samples (T2D-GENES) Consortium, Mahajan A, Go MJ, Zhang W, Below JE, Gaulton KJ, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet 2014;46:234-44. https://doi.org/10.1038/ng.2897
  19. Hong KW, Kim HL, Oh B. Genome-wide association studies of the Korea Association REsource (KARE) Consortium. Genomics Inform 2010;8:101-2. https://doi.org/10.5808/GI.2010.8.3.101
  20. Kim Y, Han BG; KoGES group. Cohort profile: the Korean Genome and Epidemiology Study (KoGES) Consortium. Int J Epidemiol 2017;46:e20.
  21. Hong CB, Kim YJ, Moon S, Shin YA, Cho YS, Lee JY. KAREBrowser: SNP database of Korea Association REsource Project. BMB Rep 2012;45:47-50. https://doi.org/10.5483/BMBRep.2012.45.1.47
  22. Jin T, Youn J, Kim AN, Kang M, Kim K, Sung J, Lee JE. Interactions of habitual coffee consumption by genetic polymorphisms with the risk of prediabetes and type 2 diabetes combined. Nutrients 2020;12:2228.
  23. Younjhin A, Lee JE, Paik HY, Lee HK, Inho J. Development of a semi-quantitative food frequency questionnaire based on dietary data from the Korea National Health and Nutrition Examination Survey. Nutr Sci 2003;6:173-84. 
  24. American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care 2021;45:S17-38. https://doi.org/10.2337/dc22-S002
  25. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, Yoon D, Lee MH, Kim DJ, Park M, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 2009;41:527-34. https://doi.org/10.1038/ng.357
  26. Kim YJ, Go MJ, Hu C, Hong CB, Kim YK, Lee JY, Hwang JY, Oh JH, Kim DJ, Kim NH, et al. Large-scale genome-wide association studies in east Asians identify new genetic loci influencing metabolic traits. Nat Genet 2011;43:990-5. https://doi.org/10.1038/ng.939
  27. Rabbee N, Speed TP. A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics 2006;22:7-12. https://doi.org/10.1093/bioinformatics/bti741
  28. Kim YK, Moon S, Hwang MY, Kim DJ, Oh JH, Kim YJ, Han BG, Lee JY, Kim BJ. Gene-based copy number variation study reveals a microdeletion at 12q24 that influences height in the Korean population. Genomics 2013;101:134-8. https://doi.org/10.1016/j.ygeno.2012.11.002
  29. Wang T, Huang T, Heianza Y, Sun D, Zheng Y, Ma W, Jensen MK, Kang JH, Wiggs JL, Pasquale LR, et al. Genetic susceptibility, change in physical activity, and long-term weight gain. Diabetes 2017;66:2704-12. https://doi.org/10.2337/db17-0071
  30. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 2016;40:304-14. https://doi.org/10.1002/gepi.21965
  31. Palmer TM, Sterne JA, Harbord RM, Lawlor DA, Sheehan NA, Meng S, Granell R, Smith GD, Didelez V. Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses. Am J Epidemiol 2011;173:1392-403.  https://doi.org/10.1093/aje/kwr026
  32. Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat Med 2016;35:1880-906. https://doi.org/10.1002/sim.6835
  33. Burgess S, Foley CN, Allara E, Staley JR, Howson JMM. A robust and efficient method for Mendelian randomization with hundreds of genetic variants. Nat Commun 2020;11:376.
  34. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 2015;44:512-25. https://doi.org/10.1093/ije/dyv080
  35. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 2018;50:693-8. https://doi.org/10.1038/s41588-018-0099-7
  36. Lee JK, Kim K, Ahn Y, Yang M, Lee JE. Habitual coffee intake, genetic polymorphisms, and type 2 diabetes. Eur J Endocrinol 2015;172:595-601. https://doi.org/10.1530/EJE-14-0805
  37. Shin S, Lee JE, Loftfield E, Shu XO, Abe SK, Rahman MS, Saito E, Islam MR, Tsugane S, Sawada N, et al. Coffee and tea consumption and mortality from all causes, cardiovascular disease and cancer: a pooled analysis of prospective studies from the Asia Cohort Consortium. Int J Epidemiol 2022;51:626-40. https://doi.org/10.1093/ije/dyab161
  38. Ding M, Bhupathiraju SN, Chen M, van Dam RM, Hu FB. Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: a systematic review and a dose-response meta-analysis. Diabetes Care 2014;37:569-86. https://doi.org/10.2337/dc13-1203
  39. O'Keefe JH, Bhatti SK, Patil HR, DiNicolantonio JJ, Lucan SC, Lavie CJ. Effects of habitual coffee consumption on cardiometabolic disease, cardiovascular health, and all-cause mortality. J Am Coll Cardiol 2013;62:1043-51. https://doi.org/10.1016/j.jacc.2013.06.035
  40. Huxley R, Lee CM, Barzi F, Timmermeister L, Czernichow S, Perkovic V, Grobbee DE, Batty D, Woodward M. Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med 2009;169:2053-63. https://doi.org/10.1001/archinternmed.2009.439
  41. Carlstrom M, Larsson SC. Coffee consumption and reduced risk of developing type 2 diabetes: a systematic review with meta-analysis. Nutr Rev 2018;76:395-417. https://doi.org/10.1093/nutrit/nuy014
  42. Nordestgaard AT, Thomsen M, Nordestgaard BG. Coffee intake and risk of obesity, metabolic syndrome and type 2 diabetes: a Mendelian randomization study. Int J Epidemiol 2015;44:551-65. https://doi.org/10.1093/ije/dyv083
  43. Kwok MK, Leung GM, Schooling CM. Habitual coffee consumption and risk of type 2 diabetes, ischemic heart disease, depression and Alzheimer's disease: a Mendelian randomization study. Sci Rep 2016;6:36500.
  44. Nicolopoulos K, Mulugeta A, Zhou A, Hypponen E. Association between habitual coffee consumption and multiple disease outcomes: a Mendelian randomisation phenome-wide association study in the UK Biobank. Clin Nutr 2020;39:3467-76. https://doi.org/10.1016/j.clnu.2020.03.009
  45. Zhou A, Hypponen E. Long-term coffee consumption, caffeine metabolism genetics, and risk of cardiovascular disease: a prospective analysis of up to 347,077 individuals and 8368 cases. Am J Clin Nutr 2019;109:509-16. https://doi.org/10.1093/ajcn/nqy297
  46. Nordestgaard AT. Causal relationship from coffee consumption to diseases and mortality: a review of observational and Mendelian randomization studies including cardiometabolic diseases, cancer, gallstones and other diseases. Eur J Nutr 2022;61:573-87. https://doi.org/10.1007/s00394-021-02650-9
  47. Coffee and Caffeine Genetics Consortium, Cornelis MC, Byrne EM, Esko T, Nalls MA, Ganna A, Paynter N, Monda KL, Amin N, Fischer K, et al. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption. Mol Psychiatry 2015;20:647-56. https://doi.org/10.1038/mp.2014.107
  48. Yuan S, Gill D, Giovannucci EL, Larsson SC. Obesity, type 2 diabetes, lifestyle factors, and risk of gallstone disease: a Mendelian randomization investigation. Clin Gastroenterol Hepatol 2022;20:e529-37. https://doi.org/10.1016/j.cgh.2020.12.034
  49. Kusumah J, Gonzalez de Mejia E. Coffee constituents with antiadipogenic and antidiabetic potentials: a narrative review. Food Chem Toxicol 2022;161:112821.
  50. Cao H, Ou J, Chen L, Zhang Y, Szkudelski T, Delmas D, Daglia M, Xiao J. Dietary polyphenols and type 2 diabetes: Human Study and Clinical Trial. Crit Rev Food Sci Nutr 2019;59:3371-9. https://doi.org/10.1080/10408398.2018.1492900
  51. Boon EA, Croft KD, Shinde S, Hodgson JM, Ward NC. The acute effect of coffee on endothelial function and glucose metabolism following a glucose load in healthy human volunteers. Food Funct 2017;8:3366-73. https://doi.org/10.1039/C7FO00926G
  52. Hang D, Zeleznik OA, He X, Guasch-Ferre M, Jiang X, Li J, Liang L, Eliassen AH, Clish CB, Chan AT, et al. Metabolomic signatures of long-term coffee consumption and risk of type 2 diabetes in women. Diabetes Care 2020;43:2588-96. https://doi.org/10.2337/dc20-0800
  53. Kosmalski M, Pekala-Wojciechowska A, Sut A, Pietras T, Luzak B. Dietary intake of polyphenols or polyunsaturated fatty acids and its relationship with metabolic and inflammatory state in patients with type 2 diabetes mellitus. Nutrients 2022;14:1083.
  54. Micek A, Godos J, Cernigliaro A, Cincione RI, Buscemi S, Libra M, Galvano F, Grosso G. Polyphenol-rich and alcoholic beverages and metabolic status in adults living in Sicily, Southern Italy. Foods 2021;10:383.
  55. Grabez M, Skrbic R, Stojiljkovic MP, Vucic V, Rudic Grujic V, Jakovljevic V, Djuric DM, Surucic R, Savikin K, Bigovic D, et al. A prospective, randomized, double-blind, placebo-controlled trial of polyphenols on the outcomes of inflammatory factors and oxidative stress in patients with type 2 diabetes mellitus. Rev Cardiovasc Med 2022;23:57.
  56. Rudrapal M, Khairnar SJ, Khan J, Dukhyil AB, Ansari MA, Alomary MN, Alshabrmi FM, Palai S, Deb PK, Devi R. Dietary polyphenols and their role in oxidative stress-induced human diseases: insights into protective effects, antioxidant potentials and mechanism(s) of action. Front Pharmacol 2022;13:806470.
  57. Fernandes I, Oliveira J, Pinho A, Carvalho E. The role of nutraceutical containing polyphenols in diabetes prevention. Metabolites 2022;12:184.
  58. Murase T, Misawa K, Minegishi Y, Aoki M, Ominami H, Suzuki Y, Shibuya Y, Hase T. Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6J mice. Am J Physiol Endocrinol Metab 2011;300:E122-33. https://doi.org/10.1152/ajpendo.00441.2010
  59. Park SY, Freedman ND, Haiman CA, Le Marchand L, Wilkens LR, Setiawan VW. Association of coffee consumption with total and cause-specific mortality among nonwhite populations. Ann Intern Med 2017;167:228-35. https://doi.org/10.7326/M16-2472
  60. Freedman ND, Park Y, Abnet CC, Hollenbeck AR, Sinha R. Association of coffee drinking with total and cause-specific mortality. N Engl J Med 2012;366:1891-904. https://doi.org/10.1056/NEJMoa1112010
  61. Loftfield E, Freedman ND, Graubard BI, Guertin KA, Black A, Huang WY, Shebl FM, Mayne ST, Sinha R. Association of coffee consumption with overall and cause-specific mortality in a large US prospective cohort study. Am J Epidemiol 2015;182:1010-22. https://doi.org/10.1093/aje/kwv146