DOI QR코드

DOI QR Code

생물정화를 위한 세슘 및 방사선 저항성 세균의 분리

Isolation of Cesium and Radiation Resistance Bacteria for Bioremediation

  • 김재훈 (한국원자력연구원 첨단방사선연구소) ;
  • 류재혁 (한국원자력연구원 첨단방사선연구소) ;
  • 김상훈 (한국원자력연구원 첨단방사선연구소) ;
  • 안준우 (한국원자력연구원 첨단방사선연구소) ;
  • 권순재 (한국원자력연구원 첨단방사선연구소) ;
  • 김진백 (한국원자력연구원 첨단방사선연구소) ;
  • 김민규 (한국원자력연구원 첨단방사선연구소) ;
  • 임상용 (한국원자력연구원 첨단방사선연구소) ;
  • 박재남 (송원대학교 식품영양학과)
  • Jae Hoon Kim (Korea Atomic Energy Research Institute (KAERI)) ;
  • Jai Hyunk Ryu (Korea Atomic Energy Research Institute (KAERI)) ;
  • Sang Hoon Kim (Korea Atomic Energy Research Institute (KAERI)) ;
  • Joon Woo Ahn (Korea Atomic Energy Research Institute (KAERI)) ;
  • Soon Jae Kwon (Korea Atomic Energy Research Institute (KAERI)) ;
  • Jin Baek Kim (Korea Atomic Energy Research Institute (KAERI)) ;
  • Min Kyu Kim (Korea Atomic Energy Research Institute (KAERI)) ;
  • Sang Young Im (Korea Atomic Energy Research Institute (KAERI)) ;
  • Jae Nam Park (Songwon University, Department of Food and Nutrition)
  • 투고 : 2023.06.12
  • 심사 : 2023.06.22
  • 발행 : 2023.06.30

초록

The global problem of handling radioactive materials is facing limitations. Eco-friendly bioremediation methods using microorganisms are being studied. This study was conducted to screen cesium-resistant microbial strains. M1 strain was selected from the soil sample by enriched culture in R2A medium containing 100 mM CsCl. In liquid medium containing above 40 mM of CsCl, the growth of M1 was inhibited in a concentration-dependent manner. Otherwise, M1 can survive up to 80mM CsCl in solid medium although the growth rate was slow and colony size was small. M1 strain was genetically identified as a strain of the genus Acinetobacter through 16S rRNA sequencing, and radiation resistance (D10 value) of M1 was found to be 0.307 kGy. These results showed that M1 strain is highly resistant to cesium and can grow in radiation environment. It was considered that M1 strain is useful in the field of biological decontamination of cesium.

키워드

과제정보

본 연구는 과학기술정통부의 재원으로 한국원자력연구원 주요사업(523320-23) 및 한국연구재단(RS-2022-00156231)의 지원을 받아 수행되었으며, 한국원자력연구원 해체기술개발부 노창현 박사님의 연구지원에 감사드립니다.

참고문헌

  1. Avery SV. 1995. Caesium accumulation by microogranisms: uptake mechanisms, cation competition, compartmentalization and toxicity. J. Ind. Mircrobiol. Biotechnol. 14:76-84.
  2. Dekker L, Osborne TH and Santini JM. 2014. Isolation and identification of cobalt- and caesium-resistant bacteria from a nuclear fuel storage pond. FEMS Microbiol. Lett. 359:81-84.
  3. Kim Y, Jang SC, Song YH, Lee CS, Huh YS and Roh CH. 2016. Screening and Identification of a Cesium-tolerant Strain of Bacteria for Cesium Biosorption. Korean J. Environ. Biol. 34(4):304313.
  4. Jeong SW and Choi YJ. 2017. Research Perspective of an Extremophilic Bacterium, Deinococcus radiodurans on Bioremediation of Radioactive Wastes. Appl. Chem. Eng. 28(2):133-140.
  5. Evans FF, Rosado S, Sebastian GV, Casella R, Machado P, Holmstrom C, Kjelleberg S, Van Elsas JD and Seldin L. 2004. Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. FEMS Microbiol. Ecol. 49:295-305.
  6. Brar SK, Verma M, Surampalli RY, Misra K, Tyagi RD, Meunier N and Blais JF. 2006. Bioremediation of hazardous wastes: A review, Pract. Period. Hazard. Toxic Radioact. Waste Manag. 10:59-72.
  7. Prakash D, Gabani P, Chandel AK, Ronen Z and Singh OV. 2013. Bioremediation: a genuine technology to remediate radionuclides from the environment. Microb. Biotechnol. 6:349-360.
  8. Gadd GM. 2000. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr. Opin. Biotechnol. 11:271-279.
  9. Lovley DR, Phillips EJ, Gorby YA and Landa ER. 1991. Microbial reduction of uranium. Nature 350:413-416.
  10. Ahimou F, Boonaert CJ, Adriaensen Y, Jacques P, Thonart P, Paquot M and Rouxhet PG. 2007. XPS analysis of chemical functions at the surface of Bacillus subtilis. J. Colloid Interface Sci. 309:49-55.
  11. Beazley MJ, Martinez RJ, Sobecky PA, Webb SM and Taillefert M. 2007. Uranium biomineralization as a result of bacterial phosphatase activity: insights from bacterial isolates from a contaminated subsurface. Environ. Sci. Technol. 41:5701-5707.
  12. Shim HW, Jin YH, Seo SD, Lee SH and Kim DW. 2010. Highly reversible lithium storage in bacillus subtilis-directed porous Co3O4 nanostructures. ACS Nano. 5:443-449.
  13. Shim HW, Lim AH, Min KM and Kim DW. 2011. Synthesis of manganese oxide nanostructures using bacterial soft templates. Cryst. Eng. Comm. 13:6747-6752.
  14. Baik MH, Lee SY and Roh Y. 2009. Roles and importance of microbes in the radioactive waste disposal. J. Kor. Radioactive Waste Soc. 7(1):63-72.
  15. Luo X, Zeng X, He Z, Lu X, Yuan J, Shi J, Liu M, Pan Y, Wang Y. 2014. Isolation and characterization of a radiation-resistant bacterium from Taklamakan Desert showing potent ability to accumulate Lead (II) and considerable potential for bioremediation of radioactive wastes. Ecotoxicology 23:1915-1921.
  16. Kato F, Chikako K, Ayako O, Takayuki I, Hiroshi T, Yohoji M and Sugiyama H. 2000. Accumulation and subcellular localization of cesium in mycelia of streptomyces lividans and a Cs Tolerant Strain, Streptomyces sp. TOHO-2. J. Health. Sci. 46:259-262.
  17. Linda DK, Thomas O and Santini JM. 2014. Isolation and identification of cobalt- and caesium-resistant bacteria from a nuclear fuel storage pond. FEMS Microbio. Lett. 359:81-84.
  18. Wang Xu, Chen C and Wang J. 2016. Bioremiediation of cesium-contaminated soil by sorghum bicolor and soil microbial community analysis. Geomicrobiol. J. 33:216-221.
  19. Kang SM, Jang SC, Heo NS, Oh SY, Cho HJ, Rethinasabapathy M, Vilian ATE, Han YK, Roh C and Huh YS. 2017. Cesium-induced inhibition of bacterial growth of Pseudomonas aeruginosa PAO1 and their possible potential applications forbioremediation of wastewater. J. Hazardous Materials 338:323-333.
  20. Jeong SW and Choi YJ. 2017. Research Perspective of an Extremophilic Bacterium, Deinococcus radiodurans on Bioremediation of Radioactive Wastes. Appl. Chem. Eng. 28(2):133-140.
  21. Sghaier H, Bouchami O, Desler C, Lazim H, Saidi M, Rasmussen LJ and Hassen AB. 2012. Analysis of the antimicrobial susceptibility of the ionizing radiation-resistant bacterium Deinococcus radiodurans: implications for bioremediation of radioactive waste. Ann. Microbiol. 62:493-500.
  22. Cox MM and Battista JR. 2005. Deinococcus radiodurans - the consummate survivor. Nat. Rev. Microbiol. 3:882-892.
  23. Koh JS, Ko YH, Kim GS, Ynag SH and Kang KS. 1992. Degradation of fat, oils and hydrocarbons by Acinetobacter calcoaceticus. Kor. J. Appl. Microbial. Biotechnol. 20(4):477-482.
  24. Abdel-El-Haleem D. 2003. Acinetobacter: environmental and biotechnological applications. African J. Biotech. 2(4):71-74.
  25. Francisco R, Alpoim MC, Morais PV. 2002. Diversity of chromium-resistant and -reducing bacteria in a chromium-contaminated activated sludge. J. Appl. Microbiol. 92:837-843.
  26. Lopez-Fernandez M, Jroundi F, Ruiz-Fresnedav MA and Merroun ML. 2020. Microbial interaction with and tolerance of radionuclides: underlying mechanisms and biotechnological applications. Microbial. Biotechnol. 14:810-828.
  27. Sahadev CS and Balu AC. 2009. Radiation sensitivity of Acinetobacter spp. and their redicidation for preservation of meat at low temperature. Bangladesh Med. Res. Counc. Bull. 35:33-40.