DOI QR코드

DOI QR Code

Artificial Intelligence in the Pathology of Gastric Cancer

  • Sangjoon Choi (Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Seokhwi Kim (Department of Pathology, Ajou University School of Medicine)
  • 투고 : 2023.05.29
  • 심사 : 2023.07.14
  • 발행 : 2023.07.31

초록

Recent advances in artificial intelligence (AI) have provided novel tools for rapid and precise pathologic diagnosis. The introduction of digital pathology has enabled the acquisition of scanned slide images that are essential for the application of AI. The application of AI for improved pathologic diagnosis includes the error-free detection of potentially negligible lesions, such as a minute focus of metastatic tumor cells in lymph nodes, the accurate diagnosis of potentially controversial histologic findings, such as very well-differentiated carcinomas mimicking normal epithelial tissues, and the pathological subtyping of the cancers. Additionally, the utilization of AI algorithms enables the precise decision of the score of immunohistochemical markers for targeted therapies, such as human epidermal growth factor receptor 2 and programmed death-ligand 1. Studies have revealed that AI assistance can reduce the discordance of interpretation between pathologists and more accurately predict clinical outcomes. Several approaches have been employed to develop novel biomarkers from histologic images using AI. Moreover, AI-assisted analysis of the cancer microenvironment showed that the distribution of tumor-infiltrating lymphocytes was related to the response to the immune checkpoint inhibitor therapy, emphasizing its value as a biomarker. As numerous studies have demonstrated the significance of AI-assisted interpretation and biomarker development, the AI-based approach will advance diagnostic pathology.

키워드

과제정보

We thank Dr. Soo Ick Cho for information on the artificial intelligence (AI) algorithmic specifications and commercialization of the products.

참고문헌

  1. Jung KW, Kang MJ, Park EH, Yun EH, Kim HJ, Kong HJ, et al. Prediction of cancer incidence and mortality in Korea, 2023. Cancer Res Treat 2023;55:400-407. https://doi.org/10.4143/crt.2023.448
  2. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014;513:202-209. https://doi.org/10.1038/nature13480
  3. Nakamura Y, Kawazoe A, Lordick F, Janjigian YY, Shitara K. Biomarker-targeted therapies for advanced-stage gastric and gastro-oesophageal junction cancers: an emerging paradigm. Nat Rev Clin Oncol 2021;18:473-487. https://doi.org/10.1038/s41571-021-00492-2
  4. Guideline Committee of the Korean Gastric Cancer Association (KGCA), Development Working Group & Review Panel. Korean practice guideline for gastric cancer 2018: an evidence-based, multi-disciplinary approach. J Gastric Cancer 2019;19:1-48. https://doi.org/10.5230/jgc.2019.19.e8
  5. Kim JM, Sohn JH, Cho MY, Kim WH, Chang HK, Jung ES, et al. Inter-observer reproducibility in the pathologic diagnosis of gastric intraepithelial neoplasia and early carcinoma in endoscopic submucosal dissection specimens: a multi-center study. Cancer Res Treat 2019;51:1568-1577. https://doi.org/10.4143/crt.2019.019
  6. Renshaw AA, Gould EW. Measuring errors in surgical pathology in real-life practice: defining what does and does not matter. Am J Clin Pathol 2007;127:144-152. https://doi.org/10.1309/5KF89P63F4F6EUHB
  7. Robboy SJ, Weintraub S, Horvath AE, Jensen BW, Alexander CB, Fody EP, et al. Pathologist workforce in the United States: I. Development of a predictive model to examine factors influencing supply. Arch Pathol Lab Med 2013;137:1723-1732.
  8. Nam S, Chong Y, Jung CK, Kwak TY, Lee JY, Park J, et al. Introduction to digital pathology and computer-aided pathology. J Pathol Transl Med 2020;54:125-134. https://doi.org/10.4132/jptm.2019.12.31
  9. Chang HY, Jung CK, Woo JI, Lee S, Cho J, Kim SW, et al. Artificial intelligence in pathology. J Pathol Transl Med 2019;53:1-12. https://doi.org/10.4132/jptm.2018.12.16
  10. Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology. Nat Rev Clin Oncol 2019;16:703-715. https://doi.org/10.1038/s41571-019-0252-y
  11. van der Laak J, Litjens G, Ciompi F. Deep learning in histopathology: the path to the clinic. Nat Med 2021;27:775-784. https://doi.org/10.1038/s41591-021-01343-4
  12. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019;25:44-56. https://doi.org/10.1038/s41591-018-0300-7
  13. Niazi MK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence. Lancet Oncol 2019;20:e253-e261. https://doi.org/10.1016/S1470-2045(19)30154-8
  14. Colling R, Pitman H, Oien K, Rajpoot N, Macklin P, Snead D, et al. Artificial intelligence in digital pathology: a roadmap to routine use in clinical practice. J Pathol 2019;249:143-150. https://doi.org/10.1002/path.5310
  15. Lipkova J, Chen RJ, Chen B, Lu MY, Barbieri M, Shao D, et al. Artificial intelligence for multimodal data integration in oncology. Cancer Cell 2022;40:1095-1110. https://doi.org/10.1016/j.ccell.2022.09.012
  16. Baxi V, Edwards R, Montalto M, Saha S. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod Pathol 2022;35:23-32. https://doi.org/10.1038/s41379-021-00919-2
  17. Cao R, Tang L, Fang M, Zhong L, Wang S, Gong L, et al. Artificial intelligence in gastric cancer: applications and challenges. Gastroenterol Rep (Oxf ) 2022;10:goac064.
  18. Coudray N, Tsirigos A. Deep learning links histology, molecular signatures and prognosis in cancer. Nat Can 2020;1:755-757. https://doi.org/10.1038/s43018-020-0099-2
  19. Fu Y, Jung AW, Torne RV, Gonzalez S, Vohringer H, Shmatko A, et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat Can 2020;1:800-810. https://doi.org/10.1038/s43018-020-0085-8
  20. Kather JN, Heij LR, Grabsch HI, Loeffler C, Echle A, Muti HS, et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat Can 2020;1:789-799. https://doi.org/10.1038/s43018-020-0087-6
  21. Park J, Jang BG, Kim YW, Park H, Kim BH, Kim MJ, et al. A prospective validation and observer performance study of a deep learning algorithm for pathologic diagnosis of gastric tumors in endoscopic biopsies. Clin Cancer Res 2021;27:719-728. https://doi.org/10.1158/1078-0432.CCR-20-3159
  22. Song Z, Zou S, Zhou W, Huang Y, Shao L, Yuan J, et al. Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning. Nat Commun 2020;11:4294.
  23. Kanavati F, Tsuneki M. A deep learning model for gastric diffuse-type adenocarcinoma classification in whole slide images. Sci Rep 2021;11:20486.
  24. Ba W, Wang S, Shang M, Zhang Z, Wu H, Yu C, et al. Assessment of deep learning assistance for the pathological diagnosis of gastric cancer. Mod Pathol 2022;35:1262-1268. https://doi.org/10.1038/s41379-022-01073-z
  25. Matsushima J, Sato T, Ohnishi T, Yoshimura Y, Mizutani H, Koto S, et al. The use of deep learning-based computer diagnostic algorithm for detection of lymph node metastases of gastric adenocarcinoma. Int J Surg Pathol 2022:10668969221113475.
  26. Wang X, Chen Y, Gao Y, Zhang H, Guan Z, Dong Z, et al. Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning. Nat Commun 2021;12:1637.
  27. Hu Y, Su F, Dong K, Wang X, Zhao X, Jiang Y, et al. Deep learning system for lymph node quantification and metastatic cancer identification from whole-slide pathology images. Gastric Cancer 2021;24:868-877. https://doi.org/10.1007/s10120-021-01158-9
  28. Kim HN, Jang J, Heo YJ, Kim B, Jung H, Jang Y, et al. PD-L1 expression in gastric cancer determined by digital image analyses: pitfalls and correlation with pathologist interpretation. Virchows Arch 2020;476:243-250. https://doi.org/10.1007/s00428-019-02653-2
  29. Han Z, Lan J, Wang T, Hu Z, Huang Y, Deng Y, et al. A deep learning quantification algorithm for HER2 scoring of gastric cancer. Front Neurosci 2022;16:877229.
  30. Huang B, Tian S, Zhan N, Ma J, Huang Z, Zhang C, et al. Accurate diagnosis and prognosis prediction of gastric cancer using deep learning on digital pathological images: a retrospective multicentre study. EBioMedicine 2021;73:103631.
  31. Wei T, Yuan X, Gao R, Johnston L, Zhou J, Wang Y, et al. Survival prediction of stomach cancer using expression data and deep learning models with histopathological images. Cancer Sci 2023;114:690-701. https://doi.org/10.1111/cas.15592
  32. Muti HS, Heij LR, Keller G, Kohlruss M, Langer R, Dislich B, et al. Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study. Lancet Digit Health 2021;3:e654-e664. https://doi.org/10.1016/S2589-7500(21)00133-3
  33. Kather JN, Pearson AT, Halama N, Jager D, Krause J, Loosen SH, et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med 2019;25:1054-1056. https://doi.org/10.1038/s41591-019-0462-y
  34. Jeong Y, Cho CE, Kim JE, Lee J, Kim N, Jung WY, et al. Deep learning model to predict Epstein-Barr virus associated gastric cancer in histology. Sci Rep 2022;12:18466.
  35. Lee SH, Lee Y, Jang HJ. Deep learning captures selective features for discrimination of microsatellite instability from pathologic tissue slides of gastric cancer. Int J Cancer 2023;152:298-307. https://doi.org/10.1002/ijc.34251
  36. Amin MB, Edge SB, Greene FL, Byrd DR, Brookland RK, Washington MK, et al., AJCC Cancer Staging Manual. Berlin: Springer, 2017.
  37. Steiner DF, MacDonald R, Liu Y, Truszkowski P, Hipp JD, Gammage C, et al. Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. Am J Surg Pathol 2018;42:1636-1646. https://doi.org/10.1097/PAS.0000000000001151
  38. Trojani M, Contesso G, Coindre JM, Rouesse J, Bui NB, de Mascarel A, et al. Soft-tissue sarcomas of adults; study of pathological prognostic variables and definition of a histopathological grading system. Int J Cancer 1984;33:37-42. https://doi.org/10.1002/ijc.2910330108
  39. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 1991;19:403-410. https://doi.org/10.1111/j.1365-2559.1991.tb00229.x
  40. Kang YK, Kim KM, Sohn T, Choi D, Kang HJ, Ryu MH, et al. Clinical practice guideline for accurate diagnosis and effective treatment of gastrointestinal stromal tumor in Korea. J Korean Med Sci 2010;25:1543-1552. https://doi.org/10.3346/jkms.2010.25.11.1543
  41. Yucel Z, Akal F, Oltulu P. Mitotic cell detection in histopathological images of neuroendocrine tumors using improved YOLOv5 by transformer mechanism. Signal Image Video Process. Forthcoming 2023.
  42. Pantanowitz L, Hartman D, Qi Y, Cho EY, Suh B, Paeng K, et al. Accuracy and efficiency of an artificial intelligence tool when counting breast mitoses. Diagn Pathol 2020;15:80.
  43. Zehra T, Anjum S, Mahmood T, Shams M, Sultan BA, Ahmad Z, et al. A novel deep learning-based mitosis recognition approach and dataset for uterine leiomyosarcoma histopathology. Cancers (Basel) 2022;14:3785.
  44. Choi S, Cho SI, Ma M, Park S, Pereira S, Aum BJ, et al. Artificial intelligence-powered programmed death ligand 1 analyser reduces interobserver variation in tumour proportion score for non-small cell lung cancer with better prediction of immunotherapy response. Eur J Cancer 2022;170:17-26. https://doi.org/10.1016/j.ejca.2022.04.011
  45. Baxi V, Lee G, Duan C, Pandya D, Cohen DN, Edwards R, et al. Association of artificial intelligence-powered and manual quantification of programmed death-ligand 1 (PD-L1) expression with outcomes in patients treated with nivolumab ± ipilimumab. Mod Pathol 2022;35:1529-1539. https://doi.org/10.1038/s41379-022-01119-2
  46. Wang X, Wang L, Bu H, Zhang N, Yue M, Jia Z, et al. How can artificial intelligence models assist PD-L1 expression scoring in breast cancer: results of multi-institutional ring studies. NPJ Breast Cancer 2021;7:61.
  47. Wu J, Liu C, Liu X, Sun W, Li L, Gao N, et al. Artificial intelligence-assisted system for precision diagnosis of PD-L1 expression in non-small cell lung cancer. Mod Pathol 2022;35:403-411. https://doi.org/10.1038/s41379-021-00904-9
  48. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252-264. https://doi.org/10.1038/nrc3239
  49. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011;331:1565-1570. https://doi.org/10.1126/science.1203486
  50. Shitara K, Ozguroglu M, Bang YJ, Di Bartolomeo M, Mandala M, Ryu MH, et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet 2018;392:123-133. https://doi.org/10.1016/S0140-6736(18)31257-1
  51. Janjigian YY, Shitara K, Moehler M, Garrido M, Salman P, Shen L, et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet 2021;398:27-40. https://doi.org/10.1016/S0140-6736(21)00797-2
  52. Koelzer VH, Gisler A, Hanhart JC, Griss J, Wagner SN, Willi N, et al. Digital image analysis improves precision of PD-L1 scoring in cutaneous melanoma. Histopathology 2018;73:397-406. https://doi.org/10.1111/his.13528
  53. Widmaier M, Wiestler T, Walker J, Barker C, Scott ML, Sekhavati F, et al. Comparison of continuous measures across diagnostic PD-L1 assays in non-small cell lung cancer using automated image analysis. Mod Pathol 2020;33:380-390. https://doi.org/10.1038/s41379-019-0349-y
  54. Puladi B, Ooms M, Kintsler S, Houschyar KS, Steib F, Modabber A, et al. Automated PD-L1 scoring using artificial intelligence in head and neck squamous cell carcinoma. Cancers (Basel) 2021;13:4409.
  55. Park JH, Lee KS, Choi E, Jung W, Aum J, Pereira S, et al. Pathologic validation of artificial intelligence-powered prediction of combined positive score of PD-L1 immunohistochemistry in urothelial carcinoma. J Clin Oncol 2021;39:e16518.
  56. Gravalos C, Jimeno A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol 2008;19:1523-1529. https://doi.org/10.1093/annonc/mdn169
  57. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 2010;376:687-697. https://doi.org/10.1016/S0140-6736(10)61121-X
  58. Bartley AN, Washington MK, Colasacco C, Ventura CB, Ismaila N, Benson AB 3rd, et al. HER2 testing and clinical decision making in gastroesophageal adenocarcinoma: guideline from the College of American Pathologists, American Society for Clinical Pathology, and the American Society of Clinical Oncology. J Clin Oncol 2017;35:446-464. https://doi.org/10.1200/JCO.2016.69.4836
  59. Wu S, Yue M, Zhang J, Li X, Li Z, Zhang H, et al. The role of artificial intelligence in accurate interpretation of HER2 immunohistochemical scores 0 and 1+ in breast cancer. Mod Pathol 2023;36:100054.
  60. Zakrzewski F, de Back W, Weigert M, Wenke T, Zeugner S, Mantey R, et al. Automated detection of the HER2 gene amplification status in Fluorescence in situ hybridization images for the diagnostics of cancer tissues. Sci Rep 2019;9:8231.
  61. Qaiser T, Mukherjee A, Reddy Pb C, Munugoti SD, Tallam V, Pitkaaho T, et al. HER2 challenge contest: a detailed assessment of automated HER2 scoring algorithms in whole slide images of breast cancer tissues. Histopathology 2018;72:227-238. https://doi.org/10.1111/his.13333
  62. Farahmand S, Fernandez AI, Ahmed FS, Rimm DL, Chuang JH, Reisenbichler E, et al. Deep learning trained on hematoxylin and eosin tumor region of Interest predicts HER2 status and trastuzumab treatment response in HER2+ breast cancer. Mod Pathol 2022;35:44-51. https://doi.org/10.1038/s41379-021-00911-w
  63. Tsai PC, Lee TH, Kuo KC, Su FY, Lee TM, Marostica E, et al. Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients. Nat Commun 2023;14:2102.
  64. Saillard C, Schmauch B, Laifa O, Moarii M, Toldo S, Zaslavskiy M, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides. Hepatology 2020;72:2000-2013. https://doi.org/10.1002/hep.31207
  65. Howard FM, Dolezal J, Kochanny S, Khramtsova G, Vickery J, Srisuwananukorn A, et al. Integration of clinical features and deep learning on pathology for the prediction of breast cancer recurrence assays and risk of recurrence. NPJ Breast Cancer 2023;9:25.
  66. Foersch S, Eckstein M, Wagner DC, Gach F, Woerl AC, Geiger J, et al. Deep learning for diagnosis and survival prediction in soft tissue sarcoma. Ann Oncol 2021;32:1178-1187. https://doi.org/10.1016/j.annonc.2021.06.007
  67. Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 2015;21:449-456. https://doi.org/10.1038/nm.3850
  68. Sanjeevaiah A, Cheedella N, Hester C, Porembka MR. Gastric cancer: recent molecular classification advances, racial disparity, and management implications. J Oncol Pract 2018;14:217-224. https://doi.org/10.1200/JOP.17.00025
  69. Wang Y, Hu C, Kwok T, Bain CA, Xue X, Gasser RB, et al. DEMoS: a deep learning-based ensemble approach for predicting the molecular subtypes of gastric adenocarcinomas from histopathological images. Bioinformatics 2022;38:4206-4213. https://doi.org/10.1093/bioinformatics/btac456
  70. Flinner N, Gretser S, Quaas A, Bankov K, Stoll A, Heckmann LE, et al. Deep learning based on hematoxylin-eosin staining outperforms immunohistochemistry in predicting molecular subtypes of gastric adenocarcinoma. J Pathol 2022;257:218-226. https://doi.org/10.1002/path.5879
  71. Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K, et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med 2018;24:1449-1458. https://doi.org/10.1038/s41591-018-0101-z
  72. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyo D, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med 2018;24:1559-1567. https://doi.org/10.1038/s41591-018-0177-5
  73. Chen RJ, Lu MY, Williamson DF, Chen TY, Lipkova J, Noor Z, et al. Pan-cancer integrative histology-genomic analysis via multimodal deep learning. Cancer Cell 2022;40:865-878.e6. https://doi.org/10.1016/j.ccell.2022.07.004
  74. Saldanha OL, Loeffler CM, Niehues JM, van Treeck M, Seraphin TP, Hewitt KJ, et al. Self-supervised attention-based deep learning for pan-cancer mutation prediction from histopathology. NPJ Precis Oncol 2023;7:35.
  75. Paijens ST, Vledder A, de Bruyn M, Nijman HW. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol Immunol 2021;18:842-859. https://doi.org/10.1038/s41423-020-00565-9
  76. Hegde PS, Karanikas V, Evers S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin Cancer Res 2016;22:1865-1874. https://doi.org/10.1158/1078-0432.CCR-15-1507
  77. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature 2017;541:321-330.
  78. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018;554:544-548. https://doi.org/10.1038/nature25501
  79. Park S, Ock CY, Kim H, Pereira S, Park S, Ma M, et al. Artificial intelligence-powered spatial analysis of tumor-infiltrating lymphocytes as complementary biomarker for immune checkpoint inhibition in non-small-cell lung cancer. J Clin Oncol 2022;40:1916-1928. https://doi.org/10.1200/JCO.21.02010
  80. Oya Y, Hayakawa Y, Koike K. Tumor microenvironment in gastric cancers. Cancer Sci 2020;111:2696-2707. https://doi.org/10.1111/cas.14521
  81. Kemi N, Ylitalo O, Vayrynen JP, Helminen O, Junttila A, Mrena J, et al. Tertiary lymphoid structures and gastric cancer prognosis. APMIS 2023;131:19-25. https://doi.org/10.1111/apm.13277
  82. Ham IH, Lee D, Hur H. Role of cancer-associated fibroblast in gastric cancer progression and resistance to treatments. J Oncol 2019;2019:6270784.
  83. Zhou Q, Wu X, Wang X, Yu Z, Pan T, Li Z, et al. The reciprocal interaction between tumor cells and activated fibroblasts mediated by TNF-α/IL-33/ST2L signaling promotes gastric cancer metastasis. Oncogene 2020;39:1414-1428. https://doi.org/10.1038/s41388-019-1078-x
  84. Taylor-Weiner A, Pokkalla H, Han L, Jia C, Huss R, Chung C, et al. A machine learning approach enables quantitative measurement of liver histology and disease monitoring in NASH. Hepatology 2021;74:133-147. https://doi.org/10.1002/hep.31750
  85. Yu Y, Wang J, Ng CW, Ma Y, Mo S, Fong EL, et al. Deep learning enables automated scoring of liver fibrosis stages. Sci Rep 2018;8:16016.
  86. Li Z, Jiang Y, Li B, Han Z, Shen J, Xia Y, et al. Development and validation of a machine learning model for detection and classification of tertiary lymphoid structures in gastrointestinal cancers. JAMA Netw Open 2023;6:e2252553.
  87. Xu H, Cong F, Hwang TH. Machine learning and artificial intelligence-driven spatial analysis of the tumor immune microenvironment in pathology slides. Eur Urol Focus 2021;7:706-709. https://doi.org/10.1016/j.euf.2021.07.006
  88. Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva V, Busam KJ, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med 2019;25:1301-1309. https://doi.org/10.1038/s41591-019-0508-1
  89. Kann BH, Hosny A, Aerts HJ. Artificial intelligence for clinical oncology. Cancer Cell 2021;39:916-927. https://doi.org/10.1016/j.ccell.2021.04.002
  90. Ueyama H, Kato Y, Akazawa Y, Yatagai N, Komori H, Takeda T, et al. Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on magnifying endoscopy with narrow-band imaging. J Gastroenterol Hepatol 2021;36:482-489. https://doi.org/10.1111/jgh.15190
  91. Homeyer A, Lotz J, Schwen LO, Weiss N, Romberg D, Hofener H, et al. Artificial intelligence in pathology: from prototype to product. J Pathol Inform 2021;12:13.
  92. Tizhoosh HR, Pantanowitz L. Artificial intelligence and digital pathology: challenges and opportunities. J Pathol Inform 2018;9:38.
  93. Kim I, Kang K, Song Y, Kim TJ. Application of artificial intelligence in pathology: trends and challenges. Diagnostics (Basel) 2022;12:2794.
  94. Cheng JY, Abel JT, Balis UG, McClintock DS, Pantanowitz L. Challenges in the development, deployment, and regulation of artificial intelligence in anatomic pathology. Am J Pathol 2021;191:1684-1692. https://doi.org/10.1016/j.ajpath.2020.10.018
  95. Carter SM, Rogers W, Win KT, Frazer H, Richards B, Houssami N. The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. Breast 2020;49:25-32. https://doi.org/10.1016/j.breast.2019.10.001
  96. Amann J, Vetter D, Blomberg SN, Christensen HC, Coffee M, Gerke S, et al. To explain or not to explain?-Artificial intelligence explainability in clinical decision support systems. PLOS Digit Health 2022;1:e0000016.
  97. Shmatko A, Ghaffari Laleh N, Gerstung M, Kather JN. Artificial intelligence in histopathology: enhancing cancer research and clinical oncology. Nat Can 2022;3:1026-1038. https://doi.org/10.1038/s43018-022-00436-4
  98. Ayorinde JO, Citterio F, Landro M, Peruzzo E, Islam T, Tilley S, et al. Artificial intelligence you can trust: what matters beyond performance when applying artificial intelligence to renal histopathology? J Am Soc Nephrol 2022;33:2133-2140. https://doi.org/10.1681/ASN.2022010069
  99. Stenzinger A, Alber M, Allgauer M, Jurmeister P, Bockmayr M, Budczies J, et al. Artificial intelligence and pathology: from principles to practice and future applications in histomorphology and molecular profiling. Semin Cancer Biol 2022;84:129-143. https://doi.org/10.1016/j.semcancer.2021.02.011
  100. Howard FM, Dolezal J, Kochanny S, Schulte J, Chen H, Heij L, et al. The impact of site-specific digital histology signatures on deep learning model accuracy and bias. Nat Commun 2021;12:4423.