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A MODEL OF RETIREMENT AND

CONSUMPTION-PORTFOLIO CHOICE

Junkee Jeon and Hyeng Keun Koo

Abstract. In this study we propose a model of optimal retirement, con-

sumption and portfolio choice of an individual agent, which encompasses
a large class of the models in the literature, and provide a methodology

to solve the model. Different from the traditional approach, we consider
the problems before and after retirement simultaneously and identify the

difference in the dual value functions as the utility value of lifetime labor.

The utility value has an option nature, namely, it is the maximized value
of choosing the retirement time optimally and we discover it by solving

a variational inequality. Then, we discover the dual value functions by

using the utility value. We discover the value function and optimal poli-
cies by establishing a duality between the value function and the dual

value function. The model and approach offer a significant advantage for

computation of optimal policies for a large class of problems.

1. Introduction

In this study, we propose and investigate a model of optimal retirement, con-
sumption and portfolio choice of an individual agent. The optimal retirement
decision is an important determinant of labor supply and human capital. The
option of voluntary retirement makes the beta of human capital negative, since
one can work longer after poor realizations of investment outcomes and has an
important effect on risk taking attitudes ([7]). Researchers have developed eco-
nomic models of the retirement decision in conjunction with the consumption
and portfolio choice. In particular, they have shown that the retirement option
induces people to increase savings and to make aggressive investments before
retirement and to increase risky positions in a stock market boom even after
making large profits ([4,5,8,17]). The models, thus, have provided a profound
insight into the interaction between the retirement decision and the life cycle
choice of consumption and investment.
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The models in the literature, however, are highly specialized and often make
contradicting predictions. For example, the models of [7] and [8] predict jumps
of consumption at retirement, whereas those of [4] and [17] do not. The differ-
ence in the models originates from the special utility functions they employ, and
hence, the predictions are not robust to changes in the utility specifications.

Our objective is (i) to propose a unified model, which encompasses a large
class of the models in the literature and (ii) to provide a methodology to solve
the model. For the first objective, we propose a model with minimum assump-
tions among those employing time separable expected utility functions with a
constant subjective discount rate and stationary felicity functions before and
after retirement in a single-good economy. The minimum assumptions consist
of two; Assumption 1 is the condition for the problem to be well-defined, which
is much less restrictive than those in the literature, and Assumption 2 is the
necessary and sufficient condition for the retirement option to have a positive
value. We next solve the problem by the dual martingale approach. However,
we do not take the traditional approach of taking sequential steps; solving the
problem after retirement in the first step and then solving the problem before
retirement in the second step, taking the solution in the second step as an
essential ingredient.1 Instead we consider the problems before and after re-
tirement simultaneously and identify the difference in the dual value functions
as the utility value of lifetime labor. The utility value has an option nature,
namely, it is the maximized value of choosing the retirement time optimally,
and can be obtained as a solution to a variational inequality. Then, we find the
dual value functions by using the utility value. We discover the value function
and optimal policies by establishing a duality between the value function and
the dual value function.

As an illustrative example we provide a model which subsumes major models
in the literature as special cases. We obtain optimal policies in closed form
when the felicity function has constant relative risk aversion. The model and
approach offer a significant advantage for computation of optimal policies for
a large class of problems, for which only specialized approaches were available.

[17] have considered the utility value of lifetime labor and derived its value
by solving a variational inequality. Their method is, however, still the two-step
method. [11] make an observation that the dual value functions before and
after retirement differ by the utility value of lifetime labor. [12] study a con-
sumption/portfolio choice and retirement problem with flexible labor supply
and use a method similar to ours. However, in these studies the felicity func-
tions before and after retirement differ by disutility of labor, while we consider
generally different felicity functions before and after retirement in this paper.
In the absence of voluntary retirement option [2] and [3] study flexible labor
supply with an exogenously fixed retirement date. Recently, [10] investigate an

1Most of the papers in the literature take this two-step approach. See [17] for a systematic

treatment.
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optimal investment and consumption problem with heterogeneous consumption
of basic and luxury goods, together with choice of a retirement time.

The paper is organized as follows. Section 2 explains the model. Section
3 sets up the dual optimization problem and provides a solution. Section 4
establishes the duality between the value function and the dual value function
and derives the optimal policies. Section 5 discusses examples and Section 6
concludes. All the auxiliary lemmas are contained in the appendix.

2. Model

We consider an agent who lives in a single good economy. The agent is
currently working and has an option to retire voluntarily. The agent cannot
come back to work after retirement, and hence, retirement is an irreversible de-
cision. The agent’s preference over consumption is represented by the following
expected utility function:

(1) U ≡ E
[∫ τ

0

e−ρtuB(ct)dt+

∫ ∞

τ

e−ρtuA(ct)dt

]
.

Here ρ > 0 is the subjective discount rate, τ is the time of, ct is the rate of
consumption, and uB : D → R and uA : D → R (D = [0,∞) or (0,∞)) are the
agent’s felicity functions before and after retirement, respectively.2

There are two assets in the financial market, a risk-free asset and a risky
asset. The return on the risk-free asset is a constant r > 0. The cum-dividend
price St of the risky asset follows the dynamics:

(2)
dSt

St
= µdt+ σdBt,

where µ > 0 and σ are constants, describing the mean and standard deviation of
the returns on the risky asset, and Bt is a standard Brownian motion defined on
a filtered probability space (Ω,F , P ). We assume that filtration F = (Ft)t≥0 is
the augmented filtration generated by Bt; it describes the information available
to the agent at each instance. The two asset model is without loss of generality
if the market consists of n-risky assets and a single risk-free asset with constant
covariance matrix of risky asset returns. In this case the two-fund separation
theorem is valid and the risky asset corresponds to the market portfolio ([9]).
There are no trading frictions, i.e., no transaction costs nor taxes nor short-
selling restrictions.

We assume that the agent receives constant wage income equal to ϵ > 0 until
retirement. The constant wage rate assumption is standard in literature.3 Let

2We consider an infinite horizon model for simplicity of exposition, and extension to a
finite horizon is technically complex, but can be done following the methods in [17].

3For example, [8] states, “we maintain the assumption that agents receive a constant
wage. This is done not only for simplicity, but more importantly because it makes the results

more surprising.” (p. 91)
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πt denote the agent’s investment in the risky asset at time t. Then, her wealth
Xt at time t satisfies the dynamics:

(3) dXt = [rXt + (µ− r)πt + ϵ1{t<τ} − ct]dt+ σπtdBt with X0 = x,

where x is her initial wealth and 1A denotes the indicator function of set A.
The natural limit for the wealth is the following:

(4) Xt ≥ − ϵ

r
1{t<τ},

that is, the agent cannot borrow more than the maximum possible present
value of labor income. Constraint (4) does not impose any further borrowing
constraints than implied by the present value of income. Hence the financial
market is dynamically complete.

We give technical admissibility conditions for (c, π, τ). Throughout the pa-
per, (c, π, τ) belongs to the admissible class A(x) if they are Ft-progressively
measurable processes satisfying the following conditions:

(a) τ belongs to S, the set of all F-stopping times taking values in [0,∞],
(b) (c, π, τ) satisfies the agent’s wealth dynamics in (3) together with con-

straint (4),
(c) c and π satisfy

(5) ct ≥ 0, a.s.,

∫ t

0

csds < ∞, a.s. and

∫ t

0

π2
sds < ∞ a.s., ∀ t ≥ 0.

We define the class Σ of all set of felicity functions u satisfying the following
conditions:

(i) The felicity function u : D → R is strictly increasing, strictly concave
and continuously differentiable, and limc→+∞ u′(c) = 0.

The strictly decreasing and continuous function u′ : (0,∞)
onto−→ (0, u′(0))

has a strictly decreasing, continuous inverse Iu : (0, u′(0))
onto−→ (0,∞).

We extend Iu by setting Iu(y) = 0 for y ≥ u′(0). Then, we have

u′(Iu(y)) =

{
y, 0 < y < u′(0),

u′(0), y ≥ u′(0),
(6)

and Iu(u
′(c)) = c for 0 < c < ∞. Note that limy→∞ Iu(y) = 0.

(ii) For any y > 0, ∫ y

0

η−n2Iu(η)dη < ∞,(7)

where n1 > 0 and n2 < 0 are two roots of the quadratic equation:

(8)
θ2

2
n2 +

(
ρ− r − θ2

2

)
n− ρ = 0,

where

θ ≡ µ− r

σ
.
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Note that the constant θ is equal to the Sharpe ratio of the risky asset.
To guarantee that the problem is well-defined, we make the following as-

sumption:

Assumption 1.
(i) uB , uA ∈ Σ.
(ii) For all y > 0, the following inequality holds:

uB(IuB
(y)) < uA(IuA

(y)).

Assumption 1(ii) states that the post-retirement felicity (period utility) is
greater than the pre-retirement felicity if the felicities are measured at con-
sumption levels which provide the same marginal utility y before and after
retirement. [4] have proposed a model with disutility of labor before retire-
ment. In the model the assumption means that disutility is positive. [8] and
[7] have studied a model where consumption is augmented by a multiplicative
factor k > 1 for calculation of the post-retirement felicity, i.e., uA(c) = uB(kc).
Here the marginal utility of consumption is magnified by k after retirement,
and hence the same marginal utility is obtained if the marginal utility is re-
duced by 1

k and the level of consumption is also reduced by the same factor,
i.e., for the given pre-retirement marginal utility y, the same marginal util-
ity y is obtained after retirement when post-retirement consumption is equal
to 1

k IuB
( yk ). Hence uA(IuA

(y)) = uB(IuB
( yk )). Since uB exhibits diminishing

marginal utility, i.e., strictly concave, IuB
( yk ) > IuB

(y), and the assumption
is satisfied. Under Assumption 1(ii) we can show that the normalized mar-
ginal benefit of work defined below in (19) is an increasing function of marginal
utility (Lemma 3.1), which is necessary to establish the existence of a unique
optimal retirement boundary. We provide a class of felicity functions which
satisfy the assumption and subsume the previous two cases in Section 5.

We now state the agent’s problem:

Problem 1. Given x > − ϵ
r , we consider the following optimization problem:

V (x) = sup
(c,π,τ)∈A(x)

E
[∫ τ

0

e−ρtuB(ct)dt+

∫ ∞

τ

e−ρtuA(ct)dt

]
.

3. Optimization

We derive a solution to the agent’s optimization problem by the standard
dual martingale approach developed by [6] and [13]. They show that in a
dynamically complete market the stochastic discount factor of the economy
takes the form

(9) ξt = e−rt− 1
2 θ

2t−θBt ,

and the wealth dynamics (3) can be transformed into a budget constraint in
static form, as we state in the following proposition.
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Proposition 3.1 (Theorem 9.4 in [14]). Let x > − ϵ
r . Suppose (c, π, τ) ∈ A(x).

Then c = (ct)
∞
t=0 satisfies the following static budget constraint

(10) E
[∫ ∞

0

ξt
(
ct − ϵ1{t<τ}

)
dt

]
= x.

Conversely, suppose that c = (ct)
∞
t=0 satisfies the first condition in (5) and

τ ∈ S such that (10) is satisfied. Then there exists a portfolio process πt such
that (c, π, τ) ∈ A(x). The corresponding wealth process Xx,c,π is

dXx,c,π
t = [rXx,c,π

t + (µ− r)πt − ct + ϵ1{t<τ}]dt+ σπtdBt, t ≥ 0

and

(11) Xx,c,π
t = Et

[∫ ∞

t

ξs
ξt
(cs − ϵ1{s<τ})ds

]
,

where Et[·] = E [· | Ft] is the conditional expectation at time t on the σ-algebra
Ft.

3.1. Dual formulation

For y > 0, the conjugate function ũ of u ∈ Σ is defined as

ũ(y) = sup
c≥0

(u(c)− yc) = u(Iu(y))− yIu(y).

We formulate the following Lagrangian:

L = E
[∫ τ

0

e−ρtuB(ct)dt+

∫ ∞

τ

e−ρtuA(ct)dt

]
+ y

(
x− E

[∫ ∞

0

ξt(ct − ϵ1{t<τ})dt

])(12)

= E
[∫ τ

0

e−ρt(uB(ct)− Yy
t ct + Yy

t ϵ)dt+ e−ρτEτ

[∫ ∞

τ

e−ρ(t−τ) (uA(ct)− Yy
t ct) dt

]]
+ yx

≤ E
[∫ τ

0

e−ρt(uB(ct)− Yy
t ct + Yy

t ϵ)dt+ e−ρτEτ

[∫ ∞

τ

e−ρ(t−τ)ũA(Yy
t )dt

]]
+ yx

≤ E
[∫ τ

0

e−ρt (ũB(Yy
t ) + Yy

t ϵ) dt+

∫ ∞

τ

e−ρtũA(Yy
t )dt

]
+ yx

= E
[∫ τ

0

e−ρt (ũB(Yy
t )− ũA(Yy

t ) + Yy
t ϵ) dt+

∫ ∞

0

e−ρtũA(Yy
t )dt

]
+ yx

= JA(y) + E
[∫ τ

0

e−ρt (ũB(Yy
t )− ũA(Yy

t ) + Yy
t ϵ) dt

]
+ yx,

where y > 0 is a Lagrangian multiplier of the static budget constraint (10),
Yy
t = yeρtξt,

(13) JA(y) = E
[∫ ∞

0

e−ρtũA(Yy
t )dt

]
,

and ũB , ũA are the conjugate functions of uB , uA. The dual variable Yt is the
marginal value of wealth, as will be shown in Theorem 4.1. Note that

(14) dYy
t = (ρ− r)Yy

t dt− θYy
t dBt with Yy

0 = y.
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Thus, for y > 0 the candidate of optimal consumption (ĉ(Yy
t ))

∞
t=0 is given

by

(15) ĉ(Yy
t ) =

{
IuB

(Yy
t ) for 0 ≤ t < τ,

IuA
(Yy

t ) for t ≥ τ.

Considering the Lagrangian (12), we formulate the dual problem which
chooses the optimal time of retirement by observing the changes of the marginal
value of wealth Yt.

Problem 2. Consider the following optimal stopping problem:

(16) J(y) = JA(y) + sup
τ∈S

E
[∫ τ

0

e−ρt (ũB(Yy
t )− ũA(Yy

t ) + Yy
t ϵ) dt

]
,

where S denotes the set of F-stopping times. We call J(y) the dual value
function.

Problem 2 states that the dual value function consists of JA and the opti-
mized value of the optimal stopping problem. If τ = 0, i.e., the agent retires
immediately, then the dual value function is equal to JA, and hence, JA can
be regarded as the dual value function after retirement. The quantity

(17) ũB(Yy
t )− ũA(Yy

t ) + Yy
t ϵ

inside the integral in (16) consists of two components: the first is the difference
in the conjugate felicity functions, ũB(Yy

t )− ũA(Yy
t ), which can be interpreted

as the difference in the utility values before and after retirement, and the second
is Yy

t ϵ, labor income adjusted by the marginal utility of wealth and can be
interpreted as the utility value of labor income. Accordingly, quantity (17)
is the marginal benefit of work relative to retirement. The agent chooses the
retirement time τ that maximizes the present value of the marginal benefit. In
this sense we will call the optimized value of the optimal stopping problem as
the utility value of lifetime labor.

Let us denote the utility value of lifetime labor by P(y), i.e.,

(18) P(y) = sup
τ∈S

E
[∫ τ

0

e−ρt (ũB(Yy
t )− ũA(Yy

t ) + Yy
t ϵ) dt

]
.

Let us denote the current normalized marginal benefit of work by Ψ(y), i.e.,

(19) Ψ(y) =
1

y
(ũB(y)− ũA(y)) + ϵ.

We will now investigate properties of the normalized marginal benefit. The
following lemma provides its asymptotic behavior, whose proof is given in Ap-
pendix B.

Lemma 3.1. Ψ(y) is a strictly increasing function of y > 0 and

lim
y→∞

Ψ(y) = ϵ.
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If limy→0+ Ψ(y) ≥ 0, Lemma 3.1 implies that Ψ(y) > 0 for all y > 0. Thus,
we deduce that for any τ ∈ S

E
[∫ τ

0

e−ρt (ũB(Yy
t )− ũA(Yy

t ) + Yy
t ϵ) dt

]
≤ E

[∫ ∞

0

e−ρt (ũB(Yy
t )− ũA(Yy

t ) + Yy
t ϵ) dt

]
.

That is, the agent does not choose the option to retire in the case when
limy→0+ Ψ(y) ≥ 0, that is, the marginal benefit of work is always positive.
Consequently, the necessary condition for the agent to retire at a finite time τ
is the following, which we make a standing assumption:

Assumption 2.

lim
y→0+

Ψ(y) < 0.

Under Assumption 2, Lemma 3.1 implies that there exists a unique z̄ > 0
such that

Ψ(z̄) = 0.

By the standard theory of the optimal stopping problem ([16]), P(y) satisfies
the following variational inequality:{

LP + h(y) ≤ 0 if P(y) = 0,

LP + h(y) = 0 if P(y) > 0,
(20)

where h(y) ≡ yΨ(y) = (ũB(y)− ũA(y) + ϵy) and the differential operator L is
given by

L ≡ θ2

2
y2

d2

dy2
+ (ρ− r)y

d

dy
− ρ.

We will now provide a verification theorem. The proof is similar to that of
Theorem 3.2 and Lemma 3.4 in [15], and we omit the proof.

Theorem 3.1 (Verification theorem). Suppose that variational inequality (20)
has a solution Q(y) which is continuously differentiable in y > 0 and twice
continuously differentiable in (0,∞)\{b} for some point b > 0, and there exist
positive constants ζ1 and ζ2 such that

|Q′(y)| ≤ ζ1
(
y−ζ2 + yζ2

)
for y > 0.

Then,

(a) P(y) ≤ Q(y).
(b) If limt→∞ e−ρtE [Q(Yt)] = 0, then Q(y) = P(y) and the optimal solu-

tion to the problem in (18) is given by

τR(y) = inf{t ≥ 0 | Yy
t ∈ {y > 0 | P(y) = 0}}.
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From Theorem 3.1, we know that the transversality condition is necessary to
guarantee that the solution to the HJB equation is the option value of voluntary
retirement:

(21) lim
t→∞

e−ρtE [P(Yy
t )] = 0.

We now derive the utility value of lifetime labor, P(y). We first explain
the derivation in a heuristic and intuitive manner, and later provide a formal
statement and its proof. Suppose that there exists a boundary zR such that
if the agent’s marginal utility Yy

t hits the boundary, the agent retires. The
option value becomes zero after the agent retires. Hence, by the smooth pasting
condition we have

(22) P(zR) = P ′(zR) = 0, P(y) = 0 for 0 < y ≤ zR.

When the agent is still working, P(y) satisfies the Hamilton-Jacobi-Bellman
(HJB) equation

(23)
θ2

2
y2P ′′(y) + (ρ− r)yP(y)− ρP + h(y) = 0.

That is, for y > zR, a general solution to the HJB equation (23) can be
represented as the sum of a general solution to the homogeneous equation and
a particular solution:

P(y) = D1y
n1 +D2y

n2 + Ξh(y),

where the particular solution Ξh(y) is given by

(24) Ξh(y) =
2

θ2(n1 − n2)

[
yn2

∫ y

0

ν−n2−1h(ν)dν + yn1

∫ ∞

y

ν−n1−1h(ν)dν

]
.

More generally, for any measurable function f : R+ → R, we define two opera-
tors Ξ and Γ by

(25) Ξf (y) =
2

θ2(n1 − n2)

[
yn2

∫ y

0

ν−n2−1f(ν)dν + yn1

∫ ∞

y

ν−n1−1f(ν)dν

]
and

(26) Γf (y) =
2

θ2(n1 − n2)

[
yn2−1

∫ y

0

ν−n2f(ν)dν + yn1−1

∫ ∞

y

ν−n1f(ν)dν

]
.

To satisfy the transversality condition (21) for P(y), the coefficient D1 of
yn1 should be zero, i.e.,

D1 = 0.

Thus, we can write P(y) as

P(y) = Dyn2 + Ξh(y).

By using the smooth pasting condition (P(zR) = P ′(zR) = 0), we have∫ ∞

zR

ν−n1−1h(ν)dν = 0 and D = − 2

θ2(n1 − n2)

∫ zR

0

ν−n2−1h(ν)dν.
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We now state a formal proposition.

Proposition 3.2. The utility value of lifetime labor, P(y), is given by

P(y) = sup
τ∈S

E
[∫ τ

0

e−ρt (ũB(Yy
t )− ũA(Yy

t ) + Yy
t ϵ) dt

]
(27)

=

{
Dyn2 + Ξh(y) for y ≥ zR,

0 for 0 < y ≤ zR,

where zR ∈ (0, z̄) is a unique solution of the following equation∫ ∞

zR

ν−n1−1h(ν)dν = 0

and

D = − 2

θ2(n1 − n2)

∫ zR

0

ν−n2−1h(ν)dν.

Moreover, the optimal stopping time τR(y) is given by

τR(y) = inf{t ≥ 0 | Yy
t ≤ zR}.

Proof. Let us denote G(y) by

G(y) =
∫ ∞

y

ν−n1−1h(ν)dν =

∫ ∞

y

ν−n1Ψ(ν)dν.

By Lemma 3.1, we deduce that G(y) is strictly increasing on (0, z̄) and
strictly decreasing on (z̄,∞). Moreover,

G(z) > 0 for all z ≥ z̄.

By Assumption 2, there exist δ > 0 and yδ > 0 such that

Ψ(y) < −δ for all y ∈ (0, yδ).

For a sufficiently small y < yδ, we have

G(y) =
∫ ∞

y

ν−n1Ψ(ν)dν =

∫ yδ

y

ν−n1Ψ(ν)dν +

∫ ∞

yδ

ν−n1Ψ(ν)dν

<− δ

∫ yδ

y

ν−n1dν +

∫ ∞

yδ

ν−n1Ψ(ν)dν

=− δ
1

1− n1
(yδ

1−n1 − y1−n1) +

∫ ∞

yδ

ν−n1Ψ(ν)dν.

Since

∫ ∞

yδ

ν−n1 |Ψ(ν)|dν < ∞,

lim
y→0+

G(y) < δ
1

n1 − 1
(yδ

1−n1 − lim
y→0+

y1−n1) +

∫ ∞

yδ

ν−n1Ψ(ν)dν = −∞.

Thus, there exists a unique zR ∈ (0, z̄) such that G(zR) = 0.
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Claim 1. P(y), defined by

P(y) =

{
Dyn2 + Ξh(y) for y > zR

0 for 0 < y ≤ zR,

is continuously differentiable in (0,∞) and twice continuously differentiable in
(0,∞)\{zR} and satisfies the variational inequality (20).

Proof of Claim 1. By construction of P(y), it is clear that P(y) is continuously
differentiable in (0,∞) and twice continuously differentiable in (0,∞)\{zR}.

Note that for y ∈ (0, zR]

LP(y) + h(y) = h(y) = yΨ(y) < 0,

where we have used that fact that Ψ(y) is strictly increasing y > 0 and Ψ(z̄) =
0.

Since h(y) = ũB(y)− ũA(y) + ϵy, we have

Ξh(y) = ΞũB
(y)− ΞũA

(y) +
ϵ

r
y.

It follows from Lemma A.3 that

Ξ′
h(y) = ΓIuA

(y)− ΓIuB
(y) +

ϵ

r

and

lim
y↑∞

Ξ′
h(y) = lim

y↑∞
ΓIuA

(y)− lim
y↑∞

ΓIuB
(y) +

ϵ

r
=

ϵ

r
.

Since P(y) = Dyn2 + Ξh(y) for y > zR, we have

lim
y↑∞

P ′(y) = lim
y↑∞

(n2Dyn2−1) + lim
y↑∞

Ξ′
h(y) =

ϵ

r
> 0.

Note that for y > zR,

P(y) = Dyn2 + Ξh(y)

= − 2

θ2(n1 − n2)
yn2

∫ zR

0

ν−n2−1h(ν)dν

+
2

θ2(n1 − n2)

[
yn2

∫ y

0

ν−n2−1h(ν)dν + yn1

∫ ∞

y

ν−n1−1h(ν)dν

]
=

2

θ2(n1 − n2)

[
yn2

∫ y

zR

ν−n2−1h(ν)dν + yn1

∫ ∞

y

ν−n1−1h(ν)dν

]
.

Thus,

P ′(y) =
2

θ2(n1 − n2)

[
n2y

n2−1

∫ y

zR

ν−n2−1h(ν)dν + n1y
n1−1

∫ ∞

y

ν−n1−1h(ν)dν

]
for y > zR.

Since h(y) ≥ 0 for y ≥ z̄ and h(y) < 0 for y < z̄, we deduce that P ′(y) is
strictly increasing in y ∈ (zR, z̄) and strictly decreasing in y > z̄.
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It follows from P ′(zR) = 0 and limy↑∞ P ′(y) = ϵ
r that

P ′(y) > 0 for y > zR.

That is, P(y) is strictly increasing in y ∈ (zR,∞). Since P(zR) = 0, we have

P(y) > 0 for y > zR.

Therefore, P(y) satisfies the variational inequality (20). This completes the
proof of Claim 1. □

Claim 2. There exists a positive constant ζ such that

|P ′(y)| ≤ ζ
(
yn1−1 + yn2−1

)
and limy→∞ e−ρtE [P(Yy

t )] = 0.

Proof of Claim 2. Since

P(y) = (Dyn2 + Ξh(y))1{y>zR} =
(
Dyn2 + ΞũB

(y)− ΞũA
(y) +

ϵ

r
y
)
1{y>zR},

we have

|P ′(y)| ≤
∣∣∣n2Dyn2−1 + Ξ′

ũB
(y)− Ξ′

ũA
(y) +

ϵ

r

∣∣∣
≤ n2|D|yn2−1 + |Ξ′

ũB
(y)|+ |Ξ′

ũA
(y)|+ ϵ

r
.

Since uA, uB ∈ Σ, it follows from Lemma A.1 and Proposition 4.1 [15]4 that

|P ′(y)| ≤ ζ
(
yn1−1 + yn2−1

)
for some constant ζ > 0.

Moreover,

|P(y)| = | (Dyn2 + Ξh(y))1{y>zR}|

≤ |D|yn21{y>zR} + |ΞũA
(y)|+ |ΞũB

(y)|+ ϵ

r
y.

≤ |D|zn2

R + |ΞũA
(y)|+ |ΞũB

(y)|+ ϵ

r
y.

By Proposition 4.1 in [15], we have

lim
t→∞

e−ρtE [|ΞũA
(Yy

t )|] = lim
t→∞

e−ρtE [|ΞũB
(Yy

t )|] = 0.

Since limt→∞ e−ρt|D|zn2

R = 0 and limt→∞ e−ρtE [Yy
t ] = limt→∞ e−rty = 0,

it follows that

lim
t→∞

e−ρtE [|P(Yy
t )|] = 0.

This completes the proof of Claim 2. □

By Claim 1, Claim 2 and Theorem 3.1, we derive the desired results. □

4Tbe proposition is frequently used in proofs and we provide a review of the proposition

in Appendix D for the reader’s convenience.
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Note that

Ξh(y) = ΞũB
(y)− ΞũA

(y) +
ϵ

r
y and JA(y) = ΞũA

(y).

From (16), we derive the following corollary.

Corollary 3.1. The dual value function J(y) is given by

(28) J(y) =

{
Dyn2 + ΞũB

(y) +
ϵ

r
y for y ≥ zR,

ΞũA
(y) for 0 < y ≤ zR.

4. Optimal policies and human wealth

In this section we derive the optimal policies of the agent and discuss their
properties.

We derive the agent’s optimal policies by establishing the duality between
the value function and the dual value function.

Theorem 4.1. Given x > − ϵ
r .

(a) V (x) and J(y) satisfy the duality relationship:

(29) V (x) = inf
y>0

(J(y) + yx) , J(y) = sup
x>− ϵ

r

(V (x)− yx) .

There exists a unique y∗ > 0 such that

x = −J ′(y∗).

(b) (c∗, π∗, τ∗) given by

c∗t = ĉ(Yy∗

t ) =

{
IB(Yy∗

t ) for 0 ≤ t < τ∗,

IA(Yy∗

t ) for t ≥ τ∗,

τ∗ = τR(y
∗) = inf{t ≥ 0 | Yy∗

t ≤ zR},
and

π∗
t =

θ

σ
Y∗
t J

′′(Yy∗

t )

are admissible and optimal, i.e.,

V (x) = sup
(c,π,τ)∈A(x)

E
[∫ τ

0

e−ρtuB(ct)dt+

∫ ∞

τ

e−ρtuA(ct)dt

]
(30)

= E

[∫ τ∗

0

e−ρtuB(c
∗
t )dt+

∫ ∞

τ∗
e−ρtuA(c

∗
t )dt

]
.(31)

Here, Xt = −J ′(Yy∗

t ) and Yy∗

t = y∗eρtξt.

Proof. Since τ∗ is the first hitting time of geometric Brownian motion, it is clear
that τ∗ ∈ S. Moreover, it follows from (i) in Assumption 1 and Proposition
4.1 in [15] that

EQ[

∫ ∞

0

e−rtIA(Yy∗

t )dt] < ∞ and EQ[

∫ ∞

0

e−rtIB(Yy∗

t )dt] < ∞.(32)
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This implies that

(33)

∫ t

0

c∗sds < ∞ a.s..

Since zR < z̄ and h(y) < 0 for y ∈ (0, z̄), we have

D = − 2

θ2(n1 − n2)

∫ zR

0

ν−n2−1h(ν)dν > 0.

By (28), it follows from Lemma A.3 and D > 0 that

J ′′(y) = n2(n2 − 1)Dyn2−2 + Ξ′′
ũB

(y) > 0 for y > zR.

Since J(y) = JA(y) = ΞũA
(y) for 0 < y ≤ zR, it is clear that

J ′′(y) = Ξ′′
ũA

(y) > 0 for 0 < y ≤ zR.

Hence, J(y) is strictly convex in y > 0.
Note that

lim
y↑∞

P ′(y) =
ϵ

r
, lim

y↓0
P ′(y) = 0

and

lim
y↑∞

J ′
A(y) = 0, lim

y↓0
J ′
A(y) = −∞.

Thus, it follows that

lim
y↑∞

J ′(y) =
ϵ

r
,

lim
y↓0

J ′(y) = −∞.

Therefore, there exists a unique y∗ > 0 such that for given x > − ϵ
r

x = −J ′(y∗).

It follows from Lemma A.4 that

x = −J ′(y∗) = X (y∗) = E
[∫ ∞

0

ξt

(
ĉ(Yy∗

t )− ϵ1{t<τ∗}

)
dt

]
.

By Proposition 3.1, there exists a portfolio π∗
t such that (c∗, π∗, τ∗) ∈ A(x)

and the corresponding wealth process Xx,c∗,π∗
is

(34) dXx,c∗,π∗

t = [rXx,c∗,π∗

t + (µ− r)π∗
t − c∗t + ϵ1{t<τ∗}]dt+ σπ∗

t dBt, t ≥ 0

and

Xx,c∗,π∗

t = Et

[∫ ∞

t

ξs
ξt
(c∗s − ϵ1{s<τ∗})ds

]
.
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Hence, we have

y∗x = y∗E
[∫ ∞

0

ξt

(
ĉ(Yy∗

t )− ϵ1{t<τ∗}

)
dt

]
= E

[∫ ∞

0

Yy∗

t

(
ĉ(Yy∗

t )− ϵ1{t<τ∗}

)
dt

]
= E

[∫ τ∗

0

e−ρtuA(ĉ(Yy∗

t ))dt+

∫ ∞

τ∗
e−ρtuB(ĉ(Yy∗

t ))dt

]

− E

[∫ τ∗

0

e−ρt
(
ũB(Yy∗

t ) + Yy∗

t ϵ
)
dt+

∫ τ∗

0

e−ρtũA(Yy∗

t )dt

]

= E

[∫ τ∗

0

e−ρtuA(ĉ(Yy∗

t ))dt+

∫ ∞

τ∗
e−ρtuB(ĉ(Yy∗

t ))dt

]
− J(y∗).

Hence,

J(y∗) + y∗x = E

[∫ τ∗

0

e−ρtuA(ĉ(Yy∗

t ))dt+

∫ ∞

τ∗
e−ρtuB(ĉ(Yy∗

t ))dt

]

≤ sup
(c,π,τ∈A(x)

E
[∫ τ

0

e−ρtuA(ct)dt+

∫ ∞

τ

e−ρtuB(ct)dt

]
.

For any y > 0 and (c, π, τ) ∈ A(x),

E
[∫ τ

0

e−ρtuA(ct)dt+

∫ ∞

τ

e−ρtuB(ct)dt

]
≤ E

[∫ τ

0

e−ρtuA(ct)dt+ e−ρτVA(Xτ )

]
+ y

(
x− E

[∫ τ

0

ξt(ct − ϵ)dt+ ξτXτ

])
≤ E

[∫ τ

0

e−ρt (ũA(Yy
t ) + Yy

t ϵ) dt+ e−ρτJA(Yy
τ )

]
+ yx.

This implies that

sup
(c,π,τ)∈A(x)

E
[∫ τ

0

e−ρtuA(ct)dt+

∫ ∞

τ

e−ρtuB(ct)dt

]
≤ sup

τ∈S
inf
y>0

(
E
[∫ τ

0

e−ρt (ũA(Yy
t ) + Yy

t ϵ) dt+ e−ρτJA(Yy
τ )

]
+ yx

)
≤ inf

y>0
sup
τ∈S

(
E
[∫ τ

0

e−ρt (ũA(Yy
t ) + Yy

t ϵ) dt+ e−ρτJA(Yy
τ )

]
+ yx

)
= inf

y>0
(J(y) + yx) .

Overall, we have

J(y∗) + y∗x ≤ inf
y>0

(J(y) + yx) ≤ J(y∗) + y∗x
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and

E

[∫ τ∗

0

e−ρtuA(ĉ(Yy∗

t ))dt+

∫ ∞

τ∗
e−ρtuB(ĉ(Yy∗

t ))dt

]

= sup
(c,π,τ)∈A(x)

E
[∫ τ

0

e−ρtuA(ct)dt+

∫ ∞

τ

e−ρtuB(ct)dt

]
.

That is, c∗t = ĉ(Yy∗

t ) and τ∗ = τ∗(y∗) are optimal.
The strong Markov property implies that

ξtX (Yy∗

t ) = E
[∫ ∞

t

ξs

(
ĉ(Yy∗

s )− ϵ1{s<τR(Yy∗
t )}

)
dt

]
= ξtX

x,c∗,π∗

t .

That is,

(35) X (Yy∗

t ) = Xx,c∗,π∗

t for t ≥ 0.

By Proposition 3.1,

dX (Yy∗

t ) =
(
rX (Yy∗

t ) + (µ− r)Π(Yy∗

t )− ĉ(Yy∗

t ) + ϵ1{t<τR(y∗)}

)
dt(36)

+ σΠ(Yy∗

t )dBt

It follows from (34), (35), and (36) that

π∗
t = Π(Yy∗

t ) =
θ

σ
Yy∗

t J ′′(Yy∗

t ). □

Lemma A.4 and Theorem 4.1 imply

Xt = −J ′(Yy∗

t ) = E
[∫ ∞

t

e−ρ(s−t) ξs
ξt

(
ĉ(Yy∗

s )− ϵ1{s<τR(y∗)}

)
ds

]
.

Thus, we establish the following relationship:

(37) E
[∫ ∞

t

e−ρ(s−t) ξs
ξt
c∗sds

]
= Xt + E

[∫ τ∗

t

e−ρ(s−t) ξs
ξt
ϵds

]
.

The left-hand side is the present value of lifetime consumption. The right-hand
side consists of two components, financial wealth Xt and the present value of
labor income, which can be regarded as human wealth. Thus, the right-hand
side is equal to the agent’s total wealth, composed of financial wealth and human
wealth. Equation (37) says that life time consumption is financed by financial
wealth and human wealth.

Theorem 4.1 also implies that the agent retires when the marginal utility of
wealth reaches the threshold level zR, or equivalently, the agent’s wealth level
reaches threshold xR, satisfying

(38) xR = −J ′(zR) = −J ′
A(zR),

where we have used P ′(zR) = 0, i.e., human wealth is equal to 0 at retirement.
We now provide a comparative static result for the optimal retirement thresh-

old.
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Proposition 4.1. If ϵ increases, then the optimal retirement threshold xR

increases.

Proof. Let Ψi(y) be the current normalized marginal benefit of work for given
ϵi > 0 (i = 1, 2).

Suppose that ϵ1 > ϵ2. Then,

Ψ1(y) > Ψ2(y) for any y > 0.

Note that there exists a unique z̄i > 0 such that Ψi(z̄i) = 0 for i = 1, 2.
Since 0 = Ψ1(z̄1) = Ψ2(z̄2) > Ψ2(z̄1), it follows from Lemma 3.1 that

z̄2 > z̄1.

For i = 1, 2, there exists a unique zR,i ∈ (0, z̄i) such that

Gi(zR,i) = 0,

where

Gi(y) ≡
∫ ∞

y

ν−n1Ψi(ν)dν.

It follows from Ψ1(y) > Ψ2(y) for all y > 0 that

0 = G1(zR,1) = G2(zR,2) > G2(zR,1).

Since G2(y) is strictly increasing in y ∈ (0, z̄2), it follows from z̄2 > z̄1 > zR,1

that
zR,2 > zR,1.

That is, the free boundary zR decreases as ϵ increases.
Let xR,i be the optimal retirement threshold corresponding to zR,i.
Since JA(y) is strictly convex in y > 0, it follows from xR,i = −J ′

A(zR,i) that

xR,1 > xR,2.

Therefore, if ϵ > 0 increases, the optimal retirement threshold xR increases.
□

The following proposition shows that the agent adjusts the portfolio dis-
cretely at the retirement time, consistent with results by [4] and [5].

Proposition 4.2. If µ − r > 0 (µ − r < 0), the optimal portfolio π∗ jumps
downward (upward) just after retirement. In other words,

πτ∗− − πτ∗+ = lim
y→zR+

Π(y)− lim
y→zR−

Π(y) = − 2

µ− r
Ψ(zR).

Proof. Since J(y) = JA(y) + P(y), it is easy to obtain that

lim
y→zR+

Π(y)− lim
y→zR−

Π(y) =
θ

σ
zRP ′′(zR).(39)

Note that for y > zR, P(y) satisfies

θ2

2
y2P ′′(y) + (ρ− r)yP(y)− ρP + h(y) = 0.
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Since P(zR) = P ′(zR) = 0, we have

lim
y→zR+

P ′′(y) =− lim
y→zR+

2

θ2
1

y2
((ρ− r)yP(y)− ρP + h(y))(40)

=− 2

θ2
1

zR
h(zR) = − 2

θ2
1

zR
Ψ(zR).

By (39) and (40), we deduce that

lim
y→zR+

Π(y)− lim
y→zR−

Π(y) = − 2

µ− r
Ψ(zR). □

5. Special case

In this section we consider a special. For u ∈ Σ, let us consider the following
utility functions:

(41)
uB(c) = u(c)− l and uA(c) = u(kc+ b), l ≥ 0, k ≥ 1, b ≥ 0,

with (k − 1)2 + l2 ̸= 0.

The case l > 0, k = 1, b = 0 is the model of [4], the case l = 0, k > 1, b = 0
is that of [8] and [7], and the case l > 0, b > 0 is that of [1]. Thus, the example
encompasses important models in the literature5.

By Lemma A.5, all results in Sections 3-4 can be applied when uA, uB are
given by (41).

Recall that zR ∈ (0, z̄) is a unique solution satisfying

G(y) = 0,

where

G(y) =
∫ ∞

y

ν−n1−1h(ν)dν =

∫ ∞

y

ν−n1Ψ(ν)dν.

Moreover, G(y) is strictly increasing and decreasing in y ∈ (0, z̄) and y ∈
(z̄,∞), respectively. Since limy→0+ G(y) = −∞ and G(y) > 0 for y ≥ z̄, we
can easily derive the following lemma:

Lemma 5.1. zR < ku′(b) if and only if G(ku′(b)) > 0.

In order to obtain a more concrete solution, we assume that the agent has
constant relative risk aversion (CRRA), i.e.,

(42) u(c) =
c1−γ

1− γ
, γ ̸= 1, γ > 0,

where γ denotes the coefficient of relative risk aversion.
Then,

uB(c) =
c1−γ

1− γ
− l and uA(c) =

(kc+ b)1−γ

1− γ
,

where l ≥ 0, k ≥ 1, b ≥ 0, with (k − 1)2 + l2 ̸= 0.

5[8], [7] and [1] only consider the constant relative risk aversion (CRRA) felicity function.
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Note that, under the CRRA utility (42), the integrabiity condition (7) is
equivalent to the following assumption:

Assumption 3. The Merton constant M defined by

(43) M ≡ r +
ρ− r

γ
+

γ − 1

γ2

θ2

2
> 0

is positive.

We can easily obtain that

IuB
(y) = y−

1
γ , IuA

(y) =
1

k

((y
k

)− 1
γ − b

)
1{y≤kb−γ},

ũB(y) =
γ

1− γ
y−

1−γ
γ − l,

ũA(y) =

(
γ

1− γ

(y
k

)− 1−γ
γ

+ b
y

k

)
1{y≤kb−γ} +

b1−γ

1− γ
1{y>kb−γ}.

By Corollary 3.1, the dual value function J(y) is given by

J(y) =

{
Dyn2 + ΞũB

(y) +
ϵ

r
y for y ≥ zR,

ΞũA
(y) for 0 < y ≤ zR,

where D is given by equations (62) and (63) in Appendix C.

6. Concluding remarks

We have studied a retirement and consumption/portfolio choice of an in-
dividual economic agent. We have identified minimum assumptions for the
problem well-defined and the retirement option valuable. We have solved the
problem by formulating a Lagrangian which allows us to consider the difference
between the dual value functions before retirement and after retirement as the
option value of lifetime labor. We have shown that the option value is the
present value of the marginal benefit of work compared to retirement.

In this paper we have assumed a constant investment opportunity facing
the agent. Consideration of the model to allow general market environment
as in [18] would be a useful topic for future research. We have not considered
borrowing constraints, which can play an important role for individuals’ choice.
The extension incorporating borrowing constraints would also be an interesting
topic for future research.

Appendix A. Auxiliary lemmas

We state and prove auxiliary lemmas in this section.

Lemma A.1. For a felicity function u ∈ Σ, the following integrability condi-
tions hold: ∫ y

0

ν−n2−1|u(Iu(ν))|dν +

∫ ∞

y

ν−n1−1|u(Iu(ν))|dν < ∞
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and ∫ y

0

ν−n2−1|ũ(ν)|dν +

∫ ∞

y

ν−n1−1|ũ(ν)|dν < ∞.

Proof. Under condition (i) of Section 2, condition (ii) of the section is equivalent
to the following: for any u ∈ Σ∫ y

0

ν−n2Iu(ν)dν +

∫ ∞

y

ν−n1Iu(ν)dν < ∞.

Note that for any y > 0

u(Iu(y))− yIu(y) = ũ(y) and ũ′(y) = −Iu(y),

and thus

u(Iu(ν)) = u(Iu(y))− yIu(y) + νIu(ν) +

∫ y

ν

Iu(η)dη.

It follows that∫ y

0

ν−n2−1|u(Iu(ν))|dν +

∫ ∞

y

ν−n1−1|u(Iu(ν))|dν(44)

≤ − 1

n2
y−n2 |u(Iu(y))− yIu(y)|+

∫ y

0

ν−n2Iu(ν)dν

+

∫ y

0

∫ y

ν

ν−n2−1Iu(η)dηdν

+
1

n1
y−n1 |u(Iu(y))− yIu(y)|+

∫ ∞

y

ν−n1Iu(ν)dν

+

∫ ∞

y

∫ ν

y

ν−n1−1Iu(η)dηdν

= − 1

n2
y−n2 |u(Iu(y))− yIu(y)|+

1

n1
y−n1 |u(Iu(y))− yIu(y)|

+

(
1 +

1

n1

)∫ ∞

y

ν−n1Iu(ν)dν +

(
1− 1

n2

)∫ y

0

ν−n2Iu(ν)dν < ∞,

where we have used Fubini’s theorem in last equality.
Since u(Iu(ν)) = ũ(ν) + νIu(ν), we have

(45)

∫ y

0

ν−n2−1|ũ(ν)|dν +

∫ ∞

y

ν−n1−1|ũ(ν)|dν < ∞.
□

The following lemma follows directly from Lemma A.1 and Proposition 4.1
in [15]. Here the operators Ξ and Γ are defined in (25) and (26), respectively.

Lemma A.2. For any u ∈ Σ, ΓIu , Ξu◦Iu and Ξũ are well-defined and the
following equalities hold:

ΓIu(y) =
1

y
E
[∫ ∞

0

e−ρtYy
t Iu(Y

y
t )dt

]
, Ξu◦Iu(y) = E

[∫ ∞

0

e−ρtu(Iu(Yy
t ))dt

]
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and

Ξũ(y) = E
[∫ ∞

0

e−ρtũ(Yy
t )dt

]
,

where Yy
t ≡ yeρtξt.

Lemma A.3. For any u ∈ Ξ, the following statements are true:

(a) Ξ′
ũ(y) = −ΓIu(y).

(b) ΓIu(y) is strictly decreasing in y > 0. Thus, Ξũ(y) is strictly convex in
y > 0.

(c) limy→∞ ΓIu(y) = 0 and limy→0+ ΓIu(y) = ∞.

(d) limt→∞ e−ρtE
[
Yy
t ΓIu(Y

y∗

t )
]
= 0.

(e) There exist positive constants ζ1 and ζ2 such that

|yΓ′
Iu(y)| ≤ ζ1(y

ζ2 + y−ζ2).

Proof. (a) By the definition of Ξũ(y), we have

Ξ′
ũ(y)=

2

θ2(n1−n2)

[
n2y

n2−1

∫ y

0

ν−n2−1ũ(ν)dν+n1y
n1−1

∫ ∞

y

ν−n1−1ũ(ν)dν

]
.

It follows from Lemma A.1 and Proposition 4.1 in [15] that

lim inf
y↓0

y−n2 ũ(y) = lim inf
y↑∞

y−n1 ũ(y) = 0.(46)

By applying the integration by parts for Riemann-Stieltjes integral, it follows
from the limiting behavior of ũ in (46) that

Ξ′
ũ(y) =

2

θ2(n1−n2)

[
n2y

n2−1

∫ y

0

ν−n2−1ũ(ν)dν + n1y
n1−1

∫ ∞

y

ν−n1−1ũ(ν)dν

]
= − 2

θ2(n1−n2)

[
yn2−1

∫ y

0

ν−n2Iu(ν)dν + yn1−1

∫ ∞

y

ν−n1Iu(ν)dν

]
= −ΓIu(y),

where we have used the fact (ũ(y))′ = −Iu(y).
(b) It follows from u ∈ Σ and Proposition 4.1 in [15] that

lim inf
y↓0

y−n2Iu(y) = lim inf
y↑∞

y−n1Iu(y) = 0.(47)

The integration by parts for Riemann-Stieltjes integral implies that

Γ′
Iu(y)

=
2

θ2(n1 − n2)

[
(n2 − 1)yn2−2

∫ y

0

ν−n2Iu(ν)dν + (n1 − 1)yn1−2

∫ ∞

y

ν−n1Iu(ν)dν

]
=

2

θ2(n1 − n2)

[
yn2−2

∫ y

0

ν1−n2I ′u(ν)dν + yn1−2

∫ ∞

y

ν1−n1I ′u(ν)dν

]
< 0,

where we have used the fact Iu is strictly decreasing in y > 0.



1122 J. JEON AND H. K. KOO

(c) Note that

ΓIu(y) =
1

y
E
[∫ ∞

0

e−ρtYy
t Iu(Y

y
t )dt

]
= E

[∫ ∞

0

ξtIy(Yt)dt

]
.

Since E
[∫∞

0
ξtIu(Yy

t )dt
]
< ∞, the dominated convergence theorem implies

that

lim
y↓0

ΓIu(y) = E
[∫ ∞

0

lim
y↓0

ξtIu(ye
ρtξt)dt

]
= ∞

and

lim
y↑∞

ΓIu(y) = E
[∫ ∞

0

lim
y↑∞

ξtIu(ye
ρtξt)dt

]
= 0.

(d) Note that

yΓIu(y) = E
[∫ ∞

0

e−ρtYy
t Iu(Y

y
t )dt

]
< ∞.

Thus, it follows from Proposition 4.1 in [15] that

lim
t→∞

e−ρtE
[
Yy
t ΓIu(Y

y∗

t )
]
= 0.

(e) Since ΓIu(y) = −Ξ′
ũ(y), Proposition 4.1 [15] implies that there exits a

constant C1 > 0 satisfying

(48) |ΓIu(y)| ≤ C1(y
n1−1 + yn2−1).

Since yΓIu(y) = E
[∫∞

0
e−ρtYy

t Iu(Y
y
t )dt

]
, there exists a constant C2 > 0

such that

(49) |(yΓIu(y))
′| ≤ C2(y

n1−1 + yn2−1).

Thus, we have

|yΓ′
Iu(y)| ≤ |(yΓIu(y))

′|+ |ΓIu(y)| ≤ (C1 + C2)(y
n1−1 + yn2−1).

This completes the proof. □

Lemma A.4. Let us denote X (y) and Π(y) by

X (y) = −J ′(y) and Π(y) =
θ

σ
yJ ′′(y),

respectively.
Then, the dynamics of X (Yy

t ) follows

dX (Yy
t ) =

(
rX (Yy

t ) + (µ− r)Π(Yy
t )− ĉ(Yy

t ) + ϵ1{t<τR(y)}
)
dt+ σΠ(Yy

t )dBt

and

X (y) = E
[∫ ∞

0

ξt(ĉ(Yy
t )− ϵ1{t<τR(y)})dt

]
.
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Proof. Since J(y) is smooth in y > zR, it follows that

θ2

2
y2X ′′(y) + (ρ− r + θ2)yX ′(y)− rX (y) + IuB

(y)− ϵ = 0 for y > zR.

By Proposition 4.1 in [15], the explicit-form of JA(y) is given by

JA(y) =
2

θ2(n1 − n2)

[
yn2

∫ y

0

ν−n2−1ũA(ν)dν + yn1

∫ ∞

y

ν−n1−1ũA(ν)dν

]
.

Since JA(y) = ΞũA
(y), Lemma A.3 implies that JA(y) is strictly convex in

y > 0 and
lim
y↑∞

J ′
A(y) = 0 and lim

y↓0+
J ′
A(y) = −∞.

Moreover, JA(y) satisfies the following ordinary differential equation (ODE):

(50)
θ2

2
y2J ′′

A(y) + (ρ− r)yJ ′
A(y)− ρJA + ũA(y) = 0.

For 0 < y ≤ zR, it follows from the ODE (50) that

θ2

2
y2X ′′(y) + (ρ− r + θ2)yX ′(y)− rX (y) + IuA

(y) = 0 for 0 < y ≤ zR.

Since

(51) X (y) =

{
−Dn2y

n2−1 − Ξ′
ũB

(y)− ϵ

r
for y ≥ zR,

−Ξ′
ũA

(y) for 0 < y ≤ zR,

it is easy to show that

X (·) ∈ W2,p
loc (0,∞) for any p ≥ 1,

where W2,p(0,∞), p ≥ 1, is the completion of C∞(0,∞) under the norm

∥V ∥W2,p(0,∞) :=

[ ∫ ∞

0

( |V | p + | ∂yV | p + | ∂yyV | p ) dy

] 1
p

and W2,p
loc (0,∞), p ≥ 1, is the set of all functions whose restrictions to the

domain K belong to W2,p(K) for any compact subset K of (0,∞).

For a given T > 0, the generalized Itô’s lemma for W 2,p
loc to X (Yy

t ) yields
that

(52) dX (Yy
t ) =

(
rX (Yy

t )− ĉ(Yy
t ) + ϵ1{t<τR(y)}

)
dt+σ

(
− θ

σ
Yy
t X ′(Yy

t )

)
dBQ

t .

Hence, we have

d
(
e−rtX (Yy

t )
)
= e−rt

(
ϵ1{t<τR(y)} − ĉ(Yy

t )
)
dt(53)

+ e−rtσ

(
− θ

σ
Yy
t X ′(Yy

t )

)
dBQ

t ,

where the equivalent martingale measure Q is define as

(54)
dQ
dP

= e−
1
2 θ

2T−θBT .
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From (51), we deduce that for any y > 0

X (y) ≤D|n2|zn2−1
R + |ΓIuA

(y)|+ |ΓIuB
(y)|+ ϵ

r
,

and

|yX ′(y)| ≤D|n2(n2 − 1)|zn2−1
R + |yΓ′

IuA
(y)|+ |yΓ′

IuB
(y)|.

Thus, it follows from Lemma A.3(d) and (e) that

lim
T→∞

e−rTEQ [X (Yy
T )] =

1

y
lim

T→∞
e−ρTE [Yy

TX (Yy
T )] = 0

and the stopped process for T

Mt∧T =

∫ t∧T

0

e−rsθYy
sX ′(Yy

s )dB
Q
s

is a martingale (see Lemma 3.4 in [15]).
By integrating the both sides of (53) with respect to t, we have

X (y) = E

[∫ T

0

ξt
(
ĉ(Yy

t )− ϵ)1{t<τR(y)}
)
dt

]
+ e−rTEQ [X (Yy

T )] .

Since uA, uB ∈ Σ, it follows from Proposition 4.1 in [15] that

E
[∫ ∞

0

ξtIũA
(Yy

t )dt

]
< ∞ and E

[∫ ∞

0

ξtIũB
(Yy

t )dt

]
< ∞.

Thus, letting T → ∞, the dominated convergence theorem implies that

X (y) = E
[∫ ∞

0

ξt
(
ĉ(Yy

t )− ϵ1{t<τR(y)}
)
dt

]
.

It follows from (52) that

dX (Yy
t ) =

(
rX (Yy

t ) + (µ− r)Π(Yy
t )− ĉ(Yy

t ) + ϵ1{t<τ∗}
)
dt

+ σΠ(Yy
t )dBt for t ≥ 0. □

Lemma A.5. uA and uB in (41) satisfy Assumptions 1-2.

Proof. We have

ũB(y) = sup
c≥0

(u(c)− l − yc) = u(Iu(y))− yIu(y)− l = ũ(y)− l,

ũA(y) = sup
c≥0

(u(kc+ b)− yc)

=
(
u(Iu(

y

k
))− y

k

(
Iu(

y

k
)− b

))
1{y/k≤u′(b)} + u(b)1{y/k>u′(b)}

=
(
ũ(

y

k
) + b

y

k

)
1{y/k≤u′(b)} + u(b)1{y/k>u′(b)}

and

IuB
(y) = Iu(y) and IuA

(y) =
1

k

(
Iu(

y

k
)− b

)
1{y/k≤u′(b)}.(55)
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Since u ∈ Σ, it is easy to check that

(56) uA, uB ∈ Σ.

Note that

uA(IA(y))− uB(IA(y))(57)

= u
(
Iu(

y

k
)1{y/k≤u′(b)} + b1{y/k>u′(b)}

)
− (u(Iu(y))− l)

≥ u(Iu(
y

k
))− u(Iu(y)) + l

> 0,

where we have used the fact (k − 1)2 + l2 ̸= 0 in the second inequality.
Since ũA(y) = supc≥0 (u(kc+ b)− yc) ≥ supc≥0 (u(kc)− yc) = ũ( yk ), we

deduce that

Ψ(y) =
1

y
(ũB(y)− ũA(y)) + ϵ(58)

≤ 1

y

(
ũ(y)− l − ũ(

y

k
)
)
+ ϵ.

If k = 1 and l > 0, then

(59) lim
y→0+

Ψ(y) ≤ lim
y→0+

1

y
(ũ(y)− l − ũ(y)) + ϵ = −∞.

If k ̸= 1, then it follows from the mean-value theorem that for any y > 0
there exists yδ ∈ (y, y/k) such that

Ψ(y) ≤ 1

y
(ũ(y)− l − ũ(

y

k
)) + ϵ = −

(
1− 1

k

)
Iu(yδ)−

l

y
+ ϵ.

Since limy→0+ Iu(y) = +∞, we deduce that

lim
y→0+

Ψ(y) ≤ lim
y→0+

[
1

y
(ũ(y)− l − ũ(

y

k
)) + ϵ

]
(60)

= lim
y→0+

[
−
(
1− 1

k

)
Iu(yδ)−

l

y
+ ϵ

]
= −∞.

From (56), (57), (59), and (60), we conclude that uA and uB in (41) satisfy
Assumptions 1-2. □

Appendix B. Proof of Lemma 3.1

It follows from Assumption 1 that

Ψ′(y) =− 1

y2
(ũB(y)− ũA(y)) +

1

y
(−IuB

(y) + IuA
(y))

=− 1

y2
((ũB(y) + yIuB

(y))− (ũA(y) + yIuA
(y)))

=− (uB(IuB
(y))− uA(IuA

(y))) > 0.
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Hence, Ψ(y) is a strictly increasing function of y > 0.

(i) If limy→∞ | (ũB(y)− ũA(y)) | = ∞, it follows form L’Hospital’s rule
that

lim
y→∞

ũB(y)− ũA(y)

y
= lim

y→∞

−IuB
(y) + IuA

(y)

1
= 0.

(ii) If limy→∞ | (ũB(y)− ũA(y)) | < ∞, it is clear that

lim
y→∞

ũB(y)− ũA(y)

y
= 0.

By (i) and (ii), we deduce that

lim
y→∞

Ψ(y) = ϵ.

Appendix C. Derivation of the dual value function for the special
case in Section 5

Since

ΞũB
(y) =

2

θ2(n1 − n2)

[
yn2

∫ y

0

ν−n2−1ũB(ν)dν + yn1

∫ ∞

y

ν−n1−1ũB(ν)dν

]
,

ΞũA
(y) =

2

θ2(n1 − n2)

[
yn2

∫ y

0

ν−n2−1ũA(ν)dν + yn1

∫ ∞

y

ν−n1−1ũA(ν)dν

]
,

we have

ΞũB
(y) =

2

θ2(n1 − n2)

[
yn2

∫ y

0

ν−n2−1ũB(ν)dν + yn1

∫ ∞

y

ν−n1−1ũB(ν)dν

]
=

1

M

γ

1− γ
y−

1−γ
γ − l

ρ
,

and

(61) ΞũA
(y) =

{
ϕ1(y) for 0 < y ≤ kb−γ ,

ϕ2(y) for y > kb−γ ,

where ϕ1(y) and ϕ2(y) are given by

ϕ1(y) =

 1
M

(
γn2

1−γ + 1
)
+ n2−1

r − n2

ρ(1−γ)

n1 − n2

 b1−γ+γn1

(y
k

)n1

+
1

K

γ

1− γ
(
y

k
)−

1−γ
γ +

b

r

y

k

and

ϕ2(y) =

 1
M

(
γn1

1−γ + 1
)
+ n1−1

r − n1

ρ(1−γ)

n1 − n2

 b1−γ+γn2

(y
k

)n2

+
b1−γ

ρ(1− γ)
,

respectively.
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Since the current normalized marginal benefit of work Ψ(y) is given by

Ψ(y) =
1

y

[
γ

1− γ
y−

1−γ
γ − l −

(
γ

1− γ

(y
k

)− 1−γ
γ

+ b
y

k

)
1{y≤kb−γ} −

b1−γ

1− γ
1{y>kb−γ}

]
+ ϵ,

we have

G(kb−γ) = −

[
γ

1− γ

1

1− n1 − 1
γ

(kb−γ)1−n1− 1
γ + l

(kb−γ)−n1

n1
+

b1−γ

1− γ

(kb−γ)−n1

n1
− ϵ

(kb−γ)1−n1

n1 − 1

]
.

Lemma 5.1 implies that
(Case 1) G(kb−γ) > 0 (or equivalently, zR < kb−γ)
In this case, the coefficient D is given by

D = − 2

θ2(n1 − n2)

[
γ

1− γ

1

1− n2 − 1
γ

(
1− k

1−γ
γ

)
(zR)

1−n2− 1
γ + l

(zR)
−n2

n2
− (zR)

1−n2

n2 − 1

(
ϵ− b

k

)](62)

and zR is a unique solution of the following algebraic equation:

0 = G(zR)

=

[
γ

1− γ

1

1− n1 − 1
γ

(
1− k

1−γ
γ

)
(kb−γ)1−n1− 1

γ + l
(kb−γ)−n1

n1
− (kb−γ)1−n1

n1 − 1

(
ϵ− b

k

)]

−

[
γ

1− γ

1

1− n1 − 1
γ

(
1− k

1−γ
γ

)
(zR)

1−n1− 1
γ + l

(zR)
−n1

n1
− (zR)

1−n1

n1 − 1

(
ϵ− b

k

)]

−

[
γ

1− γ

1

1− n1 − 1
γ

(kb−γ)1−n1− 1
γ + l

(kb−γ)−n1

n1
+

b1−γ

1− γ

(kb−γ)−n1

n1
− ϵ

(kb−γ)1−n1

n1 − 1

]
.

(Case 2) G(kb−γ) ≤ 0 (or equivalently, zR ≥ kb−γ)
In this case, the coefficient D is given by

D = − 2

θ2(n1 − n2)

[
γ

1− γ

1

1− n2 − 1
γ

(
1− k

1−γ
γ

)
(kb−γ)1−n2− 1

γ + l
(kb−γ)−n2

n2
− (kb−γ)1−n2

n2 − 1

(
ϵ− b

k

)](63)

− 2

θ2(n1 − n2)

[
γ

1− γ

1

1− n2 − 1
γ

(zR)
1−n2− 1

γ + l
(zR)

−n2

n2
+

b1−γ

1− γ

(zR)
−n2

n2
− ϵ

(zR)
1−n2

n2 − 1

]

− 2

θ2(n1 − n2)

[
γ

1− γ

1

1− n2 − 1
γ

(kb−γ)1−n2− 1
γ + l

(kb−γ)−n2

n2
+

b1−γ

1− γ

(kb−γ)−n2

n2
− ϵ

(kb−γ)1−n2

n2 − 1

]

and zR is a unique solution of the following algebraic equation:

0 = G(zR)

= −

[
γ

1− γ

1

1− n1 − 1
γ

(zR)
1−n1− 1

γ + l
(zR)

−n1

n1
+

b1−γ

1− γ

(zR)
−n1

n1
− ϵ

(zR)
1−n1

n1 − 1

]
.

D. Review of Proposition 4.1 in [15]

Proposition D.1 (Proposition 4.1 in [15]). Let f(y) be an arbitrary measur-
able function defined on (0,∞). Then the following conditions are equivalent:
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(i) for every y > 0

E
[∫ ∞

0

e−ρt|f(Yt)|dt
]
< ∞,

(ii) for every y > 0∫ y

0

ν−n2−1|f(ν)|dν +

∫ ∞

y

ν−n1−1|f(ν)|dν < ∞.

Let us denote Ξf (y) by

Ξf (y) = E
[∫ ∞

0

e−ρtf(Yt)dt

]
.

Under the condition (i) or (ii), the following statements are true:

(a) lim infy↓0 y
−n2 |f(y)| = lim infy↑∞ y−n1 |f(y)| = 0,

(b) Ξf has a following form:

Ξf (y) =
2

θ2(n1 − n2)

[
yn2

∫ y

0

ν−n2−1f(ν)dν + yn1

∫ ∞

y

ν−n1−1f(ν)dν

]
,

(c) Ξf is twice differentiable and

θ2

2
y2Ξ′′

f (y) + (ρ− r)yΞ′
f (y)− ρΞf (y) + f(y) = 0,

(d) there exists a positive constant C such that

|Ξ′
f (y)| ≤ C(yn1−1 + yn2−1) for all y > 0,

(e) limt→∞ e−ρtE [|Ξf (Yt)|] = 0.
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[17] Z. Yang and H. K. Koo, Optimal consumption and portfolio selection with early retire-

ment option, Math. Oper. Res. 43 (2018), no. 4, 1378–1404. https://doi.org/10.1287/
moor.2017.0909

[18] Z. Yang, H. K. Koo, and Y. H. Shin, Optimal retirement in a general market envi-

ronment, Appl. Math. Optim. 84 (2021), no. 1, 1083–1130. https://doi.org/10.1007/
s00245-020-09671-6

Junkee Jeon

Department of Applied Mathematics

Kyung Hee University
Yongin 17104, Korea

Email address: junkeejeon@khu.ac.kr

Hyeng Keun Koo

Department of Financial Engineering

Ajou University
Suwon 16499, Korea

Email address: hkoo@ajou.ac.kr

https://doi.org/10.2307/2938333
https://doi.org/10.1007/s11579-020-00259-w
https://doi.org/10.1007/s11579-020-00259-w
https://doi.org/10.1137/0325086
https://doi.org/10.1007/b98840
https://doi.org/10.1137/S0363012997315816
https://doi.org/10.1287/moor.2017.0909
https://doi.org/10.1287/moor.2017.0909
https://doi.org/10.1007/s00245-020-09671-6
https://doi.org/10.1007/s00245-020-09671-6

