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ON THE STRUCTURE OF CERTAIN SUBSET OF
FAREY SEQUENCE

XING-WANG JIANG AND YA-L1 L1

ABSTRACT. Let F, be the Farey sequence of order n. For S C F,, let
9(S) be the set of rational numbers z/y with z,y € S, x <y and y # 0.
Recently, Wang found all subsets S of F, with |S| = n + 1 for which
9(S) C F,. Motivated by this work, we try to determine the structure
of S C Fy, such that |S| =n and Q(S) C F,. In this paper, we determine
all sets S C F), satisfying these conditions for n € {p,2p}, where p is
prime.

1. Introduction

For a positive integer n, let F),, denote the Farey sequence of order n, that
is, the set of irreducible fractions between 0 and 1 whose denominators do not
exceed n. For S C F,,, define

Q(S)={;3:x,y65, z <y, y#O}-

Recently, Wang [7] found all subsets S C F;, for which Q(S) = F,,.

Theorem 1.1 ([7, Theorem 3]). Suppose S C F, and Q(S) = F,,. Then S
can only be one of the following two sets:

S{0,1,1,...,1} ors{o,Ll,...,”l}.
2 n n n

Wang [7] also proved the following results.

Theorem 1.2 ([7, Theorem 1]). If S C F,, and Q(S) C F,,, then S has at
most n+ 1 elements.
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Theorem 1.3 ([7, Theorem 4]). Suppose S C F,, |S| =n+1 and Q(S) C F,.

Then
1 1 1 -1
52{0,1,,...,} orS:{O,l,,...,n }
2 n n n

except for n = 4, where we have an additional set S = {0, 1, %, %, % .

In 1970, Graham [4] proposed the following conjecture.
Conjecture 1.4. Let ay,aq,...,a, be distinct positive integers. Then

>n.

max
i#] (aia aj)

Vélez [6] pointed out that Graham also made the following stronger conjec-
ture.

Conjecture 1.5. Let M,, = [1,2,...,n] and ay,as,...,a, be distinct positive
integers. If
a;
a1,az,...,0,) =1 and max =n,
( ) i#i (ai; a;)
then {ay,az,...,a,} can only be {1,2,...,n} or { JVT[L”, iw_"l, cel %} except for

n = 4, where we have the additional sequence {2,3,4,6}.

These conjectures have been confirmed by Balasubramanian and Soundara-
rajan [1] based on deep analytical methods. Wang [7] showed that Theorems
1.2 and 1.3 are equivalent to Conjectures 1.4 and 1.5, respectively. In Wang’s
proofs of Theorems 1.2 and 1.3, Conjectures 1.4 and 1.5 are necessary. But there
are potentially other proofs which do not need the conjectures. Wang [7] asked
whether one can prove Theorems 1.2 and 1.3 directly and thus providing new
proofs for Graham’s conjectures. For more results about Graham’s conjectures,
see [2,3,5,8,9].

By Theorem 1.2, we know that n + 1 is critical. Motivated by Theorem 1.3,
we study the structure of S C F,, with |S| = n for which Q(S) C F,,. Obviously,

if § = {0,1,%,%...,%}01"5’: {0,1,&,...,2—:?}orSisasubsetofthesets
in Theorem 1.3, then Q(S) C F,,. We wonder whether there is other desired
set S C F,,. In this paper, we determine the structure of S C F,, with |S| =n
and Q(S) C F, for n € {p,2p}, where p is prime. For other n, we attempted
to figure out the structure of the desired set S but without success. In this

paper, the following results are proved.

Theorem 1.6. Let n € {p,2p}, where p is prime. Let S be a subset of F,
with |S| = n. Then Q(S) C F,, if and only if S satisfies one of the following
conditions:
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() $= {01,715, 72, 222}
e:ztcept for n € {4,5,6, 10} For n = 4, there are two additional sets S =
{0, 55 3’ 3} and S = {1, 5 3, d} For n = 5, there are two additional sets
S = {O 1, % % %} and S = {0 1, é, }g, g} For n = 6, there is an additional
set S = {0 1 % % } For n = 10, there are two additional sets S =
11171

111 2 1 4 5 2
{0,1,3,5: 15650 30 *} and S ={0,1,5,5:5:3:5 9> 0+ 3

wcﬂh—'
wcﬂ\w

The proof of Theorem 1.6 will be divided into two parts according to n = p
and n = 2p, which we will give in Section 2 and Section 3, respectively. In
the following, we denote F,, the set of all nonnegative fractions with both
denominator and numerator not more than n.

2. Proof of Theorem 1.6 for n = p

It is easy to verify that the sufficiency is true. Next, we prove the necessity.
If0 ¢S, then SU{0} C F, and Q(SU{0}) C F,. By Theorem 1.3, we have

SU{O}:{O 1,%,...,p}0rSU{O}—{ 711),...7”771}. Thus,

1 1 1 -1
S:{l,f,...,f} orS:{l,f,...,L}.
2 P P P
Similarly, we can get that if 1 ¢ .S, then
1 1 1 -1
S:{O,f,...,f} orS:{O,a...,L}.
2 P P P

In the following, we assume that {0,1} C S. Clearly, if p = 2, then S = {0, 1}
which satisfies the condition (i). Now, we suppose that p > 3. Let

s=fon B T BE B gy
p p p Z1 22 Zs
where the fractions are irreducible and (p,z;) =1 (1 <i < s). Clearly, S C
{o,l,p,...,%} when s = 0. If r = 0, then S C F,_; and Q(S) C F,_1. By
Theorem 1.3,
11 1 1 2 -2
S:{O,1,2,3,...,_1} orS:{O,l, _1,p_1,...,p_1}

except for p = 5, where we have an additional set S = {0 1,3 5 3, 3} Now, we

consider the case » > 1,5 > 1. Since —/y—7 = %2 ¢ [, we have
p Zj pPY;
(2.1) yil o, S <p-1(1<i<r, 1<j<5s).
Y5
Case 1. (x1,%2,...,%,) = 1. By (2.1), we have y; | (z1,22,...,2,) which
implies y; = 1 for any 1 < j < s. And now, all z;’s are distinct and greater
than 1. It follows from (2.1) that

(2.2) r(s+1) < max ;- max z; <p—1=r+s+1.
i€[1,7] j€[1,s]
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Thus, »r < 2. If r = 1, then 23 = 1 by (z1,22,...,2,) = 1. Therefore,
S’C{Ol1 l} If r = 2, then by (2.2), we have s = 1 and p = 5.

120 p
Furthermore by (2.2), we can get that {z1,z2} = {1,2} and z; = 2. Therefore,
S = {O 13 5 5’ 2

Case 2. ($17$2, ...,xy) > 1. Without loss of generality, we may assume

T, = rn[ax] z;. Then z, > 2r. Let z; = xrz] (1 <j <s). Then S can be
i€(l,r

rewritten as
r1 T Ty Ty Tp €T
§=1{01,=2 2 Loy
pp P2z %
Since S C F), we have z,. < z} and 2/’s are distinct. By (2.1),

2r+s <z, +s5< max zJ<p l=r+s+1.
JE[L,s]

It follows that » =1, 1 = 2 and s = p — 3. Therefore, S = {0,17 57%..,%}.

This completes the proof for the case n = p.

3. Proof of Theorem 1.6 for n = 2p

In this section, we prove Theorem 1.6 holds for n = 2p. Firstly, we give
some lemmas which will be used in the the following proof.

Lemma 3.1. Let p be odd prime and

s-fpq @ o ab b Lo 111
2 2p ) P 2uy 2us 11 Vi

be a subset of Fop, with r+s+t+k = 2p—2, where these fractions are irreducible
and ptu; (1<i<s), (vj,2p) =1 (1<j<k). If Q(S) C Fyp, then

1 1 1 2 —1
sclot,=....—Yorsclor—,. . . =2 .
2 2p 2p 2p

Proof. We may assume that a1 < --- < a,, by < -+ <by, ug <--- < us and
vy < -+ < wg. Clearly, r,s,t <p—1and k < p—2. We have a, > 2r — 1
if r >1and vy > 2k+11if kK > 1. Moreover, by a; # p and v; # p we have
aT22r+1for7“2%1andvk22k—|—3fork2p§1
Case 1. r > 1. We divide into two subcases s +t < p—1and s+t > p.
Subcase 1.1. s+t <p—1. Byr+s+t+k=2p—2wehaver+k>p—1.
Subcase 1.1.1. £ > 1. By 3 /Ulk :a””“ € Fyp,

(2r—1)(2k+1)Sarvk§2p—1§2r+2k—|—l.
This implies 7 = 1 and k = p — 2. Then we have v,_o = 2p —1 and a; = 1.
If t =0, then S C {0 1,%,...,2 } If t > 1, then it follows from l;f/vpl_Q =

w € Fy, that b(2p — 1) < 2p— 1. Thus, t = 1 and b; = 1. Therefore,
Sg{o 1;%}
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Subcase 1.1.2. £ = 0. Note that r+ k> p—1and »r < p— 1. Then in
this case, r = p—1and s+t =p—1. Wehavea,—1 =2p—1. If s =0,

then S C {0,1,2p,...,2§;1}. If s > 1, then %= 1/2% = @rlu ¢ py
1mphes (2p — us < 2p—1, and so s = 1 and uy = 1. Therefore, S C
{0 1 2p—1

’2p7"'7 2p

Subcase 1.2. s+t > p. Noting that s,t < p— 1, we have s,t > 1. By
bit/L — 2ugby c F_‘
P/ 2us P 2p;

(3.1) st <wugby <p-—1.

If s,t > 2, then s +t < st < p — 1, a contradiction. Hence, s =1 or t =1, and

so {s,t} ={1,p—1}.
Ifs=1,t=p—1, then u3 =1 and b,_; = p—1 by (3.1). When k > 1,

by “Dor - £
we can deduce from pTl/i = % € Fy, that (p — Ly, < 2p — 1. Thus,

v < 2 which is impossible. Therefore, kK =0 and .S C {O, 1,4 35 2p e Qg—;l}.
Ifs=p—1,t=1, then u,_y =p—1and by =1 by (3.1). Since r > 1, it

o :Meﬁ‘g that (p — 1)a, <2p—1. By 21 a,, we

have r = 1 and a; = 1. Therefore, SC{O 1,%,%...,%

Case 2. r = 0. It is clear that Q(S) C Fy,_1. By Theorem 1.3, we have
11 1 2 2p—2
s={onb b gt or s = {05k 52 22 The latter

follows from 3=/

IR EC S
form is impossible since i ¢ S. Therefore, S = {0, 1, ;, :1,’, N Tl—l} -
{0 1, é, % ceey 2p} This completes the proof. O

Lemma 3.2. Let p be odd prime and
pXy Xy Xy 1y ﬁ}
b7267207 77207 bbb
be a subset of Fop with k+1=2p—3, wherep <b<2p—1, (X;,2p) =1 (1<
i <k)and (Yj,p) =11 <j<I). If Q(S) C Fyp, then
1 2 2p — 2
S:{o,l, , .. P }

w—12p—1"" 201

except for p € {3,5}. There is an additional set S = {O 1,2,:1,),;,5 forp=3

and an additional set S = {O 1, %, %, é, %, %, %, g, %} forp=5.

Proof. If k =0,then ! =2p—3. Sincep ¢ {Y; : 1 <j<{}andY; <b<2p—1,
we have {Y;:1<j <} ={1,2,...,2p—2}\ {p}. Thus, b=2p—1 and
1 2 2p — 2
S:{o,l, , - }
2p—1"2p—1 2p —1

52{0,1,

Now, we deal with the case k > 0. By £ )2(17 = % € Fyp and (X;,2p) = 1, we
have X; <2p—1. Since b > p, we have % ¢ S for integers X with (X, 2b) = 1.
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It follows that

(3.2) % ¢S, % ¢S
and
(33) Plgs@ln, e s @),

Firstly, we suppose that p > 7. Let I; be the number of Y¥; with p < Y; <b.
When b is even, we have b+ 1 € (p,2p — 1]. By (3.2) and (3.3),

(G X Mgl 8 wody Lop bily
267207777200 —Ll2072077 777 2b 26267 2b )
Hence, k < p— 3. Similarly, we can get that & < p—3 when b is odd. It follows
from k + 1 = 2p — 3 that [ > p, which indicates that [y > 1 and b > p+ 2. Let
a; be the integer such that 2%i||Y;. For p <Y; < b, by % % = szz € Fyy,, we
have (X;,Y;) > 1. From this, we get that, for p <Y, <, '

(3.4) 1@/227bi2 ¢S

since (QYTJJ +2,2Y;) = 1. And if 2 € S, then

(3.5) 31Y; (p<Y; <b).
By 21 Xj;, Y; could not be of the form 2%. Let
Y;/2% 42 Y +2
A:{Ji i 9y p<Y; b}.

< minA < maxA < £, ’%4 < minB < maxB < %, and so

:2|}/}7p<}/}<b}a B:{
Hence,%
|[AUB| =1;. Let

3 5 2p—1 71 Y Y,
S':{Olg——... — oy o AU B).
TTBRT267207 20 b b ’b}\( )

Then S C 8" and |S'| =3+14+(p—1—-1) <3+(p—14+hL)+(p—-1-11) = 2p+1.
The claim below will be usually used in the following proof.

Claim 1. Let x be an odd integer with 3 < x < 2p — 1. If % ¢ S and

55 ¢ AU B, then
s (5)

Proof of Claim 1. By 57 ¢ S and 55 ¢ AUB, we have S C S’\{%}. It follows

from

T
=S| < IS\ {5 }I=191-1<2

that S = 5"\ {£}. O
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We return to the proof of Lemma 3.2 and divide into two cases according
2|band 21t0.

Case 1. 2 | b.

In this case, p+3 < b < 2p—2. When |B| =0, by 25! ¢ 4 and (3.3), w
have S C S’\{b2 , which implies that |S] < |5'| -2 < 2p 1, a contradlctlon.
Hence, |B| > 0. Without loss of generality, we may assume that p < Y; < b for
i=12,...1.

If 221 ¢ B, then S = 5"\ {3} by Claim 1. This indicates that 3 € S,
& € Aand bz_—bl € B. By the deﬁmtlons of A and B, we know that there are
two integers 1 < j',j” <y such that Y; =2p—4, Y;» =b—3. From 2 | b and
Yj/ < b, we get that b = 2p—2, and so Y;» = 2p—5. However, by (3.5), we have

3|2p—4and 3 | 2p — 5, which is impossible. Hence, b+1 € B. Similarly, we
can prove that %1 € B. By the deﬁmtlons of A and B, there exist two integers
1< 71,52 <1y SllCh that Y, =b— = b — 3. From above argument, we
know that % ¢ S. Let be the largest odd integer with 1 < jo < [y such

that JO €S, YJU gé S Deﬁne Y, = p+ 2 if such integer does not exist.

Then we have 252 2 ¢ B. By {— bT} C S, we know 7° € S. It follows

from (3. )that 0 ¢ S. Hence, S C 5"\ {2, 2b} So S| <|8—-2<2p—1,
a contradiction.

Case 2. 21b.

In this case, p+ 2 < b < 2p — 1. Firstly, we deal with the subcase |B| = 0.
Ifb=p+2 thenp <b+2<b+4<2p—1byp>7 It follows from

b2 ¢ S and &2 ¢ S that S C S’\{l’;—f, l’;‘—b‘l}. Hence, |S| < 19| -2<2p—1,
a contradiction. If b = 2p—1, then p < b—4 < b—2 < 2p—1. If p+2 < b < 2p—1,
then p < b—2 < b+ 2 < 2p—1. In both cases, by similar argument, we can
get that S| < |S’| — 2 < 2p — 1, a contradiction.

Now, we deal with the subcase |B| > 0. At this point, p+4 < b < 2p— 1.

For p+4 <b < 2p— 3, we have %2 gé B. By (3.3) and Claim 1, we obtain
S = 5"\ {%2}, which indicates that 2 e S, L € A and %2 € B. From the
definition of A, there exists an integer 1 < j’ <y such that Y;; = 2p — 4. And
now, b =2p—3and 3 |2p—4=0b—1. Since 3{b—2, we have 232 ¢ §
and % = % ¢ B. Hence, % € S. However, % ;11;:;1 = 2(221; 34) ¢ Fyy, a
contradiction.

For b = 2p — 1, we will prove that 2(2p 1) € B and

2(2 1) € A. Clearly,
2p—5 > p and 5222 ¢S If 5782 ¢B then S = S’\{z(zp %y} by Claim 1,

2(2p—
which indicates that (2p 7 € S, 2(2p 0 € A and 5 3op=1) © B. Hence, there
are two integers 1 < j’, 5 < Iy such that Y;, = 2p—4 and Yu = 2p—>5. By (3.5),
3|2p—4and 3| 2p 5 which is impossible. Therefore, 7) € B. Similarly,

we can get that 7 € A. By the definitions of A and B, Y;, = 2p — 4 and

2(2
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Y;, =2p— 7 for some 1 < jy,jo < Iy. From p <Y}, =2p — 7, we obtain p > 7,
that is p > 11.

It is easy to see that 2p — 9 > p and ¢ S, If 2= §é B, then by

2(2 202p—1)
Claim 1, we have S = 5"\ {2(221; 91)} which 1ndlcates that 2(2 —y € 5 and
% € B. Hence, there is an integer 1 < j” <y such that Y;» = 2p — 5.

By (3.5), 3| 2p—4 and 3 | 2p — 5, which is impossible. Therefore, 2(2;—91) € B.

Similarly, we have 2(217 -7y € B. By the definition of B, there are two integers

1 < js,ja <lisuchthat Y, =2p—>5and Y, =2p—11. And now, 2(2[)71) ¢5.

Since
12p-5  2p-—1 _

i/zp—l - (2p—5) % Fop,

we have % = 2(221;;11) ¢ S. Hence, 2(2p 1) € B, which implies that Y;, =2p—3

for some integer 1< j5 < ll. Let Y}, be the largest odd integer with 1 < jo <[y

Y, =p+2if such integer does not exist.
By sumlar dlscusswn to Case 1, we can get that 55-%55 §§ S and 2(2p ) ¢ B.
Hence, S C S’ \{m, m} So |S| < |97 — 2 S 2p — 1, a contradiction.

Now, we suppose that p € {3,5}. Note that X; < 2p—1 and (X;,2p) =1
for 1 < i < k. Forp*S,by3:p<b§2p71:5,Wehaveb€{4,5}. If
b = 4, then all of %,3 and % do not belong to S, contradictory with k& > 0.

Hence, b = 5. By 180 27:‘ S, 10 ¢ S and k > 0, we have § = - € S. It follows
from 1/2 = 2 ¢ Fs that 3 ¢ S. Thus, S C {0,1 ,g,é,é,% S| =2p =6
implies that S = {0,1 ,,,%7%,%}. For p = 5, we have b e {6,7,8,9}.

b = 6, then S C {0,1 ,12, 192,%,%,%,%,%} since all of 12, 152 and 1—72 do not
belong to S. Hence S| < 9 < 10 = 2p, a contradiction. If = 7, then
by 1%171:1471% and 1 not belonging to S, we have S C {0,1, - 1% % R 7}

Hence [S| < 9 < 10 = 2p, a contradiction. If b = 8, then 21 ¢ S for

i € [1,5], contradictory with k > 0. If b =9, then by £ > 0 and 218 ¢85 (i=

1,3,4), we have 13—8 € S or % = 19—8 € S. By (3.5), we have g ¢ S,g ¢ S
when 13—8 e S. If% € S, then by %/% = 2%. ¢ Fo for j = 7,8, we have
7 ¢ S,g ¢ S. Hence, S C {071,%,%,%,%,373,8,3 . |S] = 10 implies that

S {0, ,%,%,%,%,%,%,g,g} This completes the proof. O

Lemma 3.3. Let S be a subset of Fa, with |S| = 2p and Q(S) C Fy,, where p
is odd prime.
(1) If S contains no fractions whose denominators are 2p or p, then

1 2 2p — 2
s=10,1, , -
2p—1"2p—1 2p —1
except for p € {3,5}. There is an additional set S = {0,1,%,%,%,%} forp=3
=5

and an additional set S = {O, ,%, %, %, %, %, g, g, %} forp
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(2) If S contains fractions whose denominators are 2p and also contains
fractions whose denominators are p, then

11 1 1 2 % —1
Sciotl,=, ..., —borsclor— 2 ... 2L .
2°3 2p 2p° 2p 2p

Proof. (1) It is easy to see that S C F,_1. If S contains no fractions Whose nu-

merators are p, then Q(S) C Fy,_;1. By Theorem 1.3, we have S = {0 1,1 5o

ﬁ} or S = {0,17 T gz_f}. Both are impossible since ; ¢ S and
ﬁ ¢ S. If S contains fractions whose numerators are p, then we may assume
that
p x Ts
S=<0,1, e T
{ b by yl ys}

where the fractions are irreducible, by < by <--- < by, (zyi,p) =1 (1<i<
and 2+t + s = 2p. Since £/ = {71 € Fy,, we have y; | b; or % | b;. Le
d= (by,...,b). Then

s)
t

i
y;j | d or Ej|d(yjfd).
We may assume that % | d and y; {d for 1 <i <k and ypy; | d for 1 < j <1,
where k+ 1 = s. Let
J)id .
Xizi 1SZ§]§I, Y, =
yz/2 ( ) J yk+j
Then S can be rewritten as

M(1<j§l).

r Xi Xr Y1 Y,
S=<0,1,—, ..., — —, ..., —, ..., —
{’7b17 ’bt72d7 72d’d) ’d )
where (X;,2p) =1,(Y;,p)=1and 2+t +k+1=2p.
Ift>2 bytd<b <2p—1, we have d <p—1. Since b; > p (1 <i <),
we have b; > (i + 1)d. It followsthatt<££]—l. Byp<b, <2p—1, we
can get that

(3.6) tgmin{p—l, {2pd_1J —1}.

If d=p—1, then t <1, a contradiction. So d < p— 2. It is clear that X; < 2d
and Y; < d. Hence,

S| <2+t+d+d—1=t+2d+1.

When d = 1, it follows from (3.6) that |S| < p+2 < 2p, a contradiction. Hence,

d>2. Andnowp>5andt<[2p L —1.By2<d<p-2,

2p — J 2p —1
d d

2p:|5|§{ +2d < max {{

< _
2<d<p—2 J+2d} < max{p+3, 2p—1} < 2p,

a contradiction.
If t = 1, we may write by = b. Then d = b. By Lemma 3.2, we know the
result holds.
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(2

)
{ % ., 2p }1f0¢SandS—{ ,2,...,2p} or S = {72;;7"'7
¢ S. Now, we assume that {0,1} C S. Let

Similar to the proof of Theorem 1.6, we have S = { T %} rS =

L

g_lpi e ab b om Ts Y1 Yk
) 72p72p7"'72p7p)""p’2ul7"'72u53v17"')vk
with r+s4+t+k =2p—2and r,t > 1, where the fractions are irreducible and
. . . i/ T 2uj b;
(u,p) =1(1<i<s), (v5,2p) =1 (1 <j<k). Since % 3 = e, © Py,
we have
2Ujbi . .
(3.7) zj b, ——<2p-2(1<i<t 1<j<s).

J
Similarly, we can obtain that ; [ a; (1 <i<7r, 1 <j<s),

(3.8) yjlas, 24y, “L <op-1(1<i<r 1<j<k)
J
and
biv; . .
(3.9) yi b 2L <op—1(1<i<t, 1<j<h).
Yj
If (a1,a2,...,a,) = 1 or (by,ba,...,b;) =1, then 2; =1 (1 <4 < s) and
i =11 <j<k). By Lemma 3.1, we have S C {O, ,2,...,ﬁ or § C
{0 1, 2p,...,2’;—;1}. Now, we assume (a1, as,...,a,) > 1 and (b1, bo,...,b) >
1. We will deduce a contradiction.
Without loss of generality, we may assume that a1 < -+ < a, and b <
- < by, Since (aq,as9, ..., ) > 3, we have 3(2r — 1) < a, < 2p—1 and so
r < p+1 - Let v; = *%= and v}’ = M’t for i € [1,k] and u} = 2“”“ for j € [1,s].
Then S can be rewritten as both
gofopa e ab  homwnoa e
2 2p 2pp P 2uq 2us vy vy,

and
2 2p 72p7p7 p u&/?"'?@[/g]’q}i{?"'?vg
By S C Fyp, all of v;’s are distinct and larger than a,, all of u}”’s and v’s are

distinct and larger than b;. If 2 | b, then 2 | v since 2 1 y;. By (3.7), (3.9) and
2 | u} we have

S — {011(12 &bil ﬁbt by b bt}

2t + 25 4 2k < by + 25 4 2k < max({v] :i € [Lk]} U{u] :j € [1,s]}) <2p—2.

This implies that t +s+k <p—1, and so r > p— 1, contradictory to r < pTH.
Hence, 21 b; and 2t v} . From (by,bs,...,b:) > 1 we have b, > 3t. Since

Jt+1+2(s—1) <b+1+2(s—1) <max{u] : 1 <i<s} <2p—2=r+s+t+k,
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we have

(3.10) 2A+s<r+k+1.

It follows from 2 t v} and (3.8) that
3r+2k<a,+2k<max{v,:1<i<k}<2p—1l=r+s+t+k+1,

and so

(3.11) Wtk <s+t+ 1.

The inequalities (3.10) and (3.11) give us r +¢ < 2. Hence, r = ¢t = 1 and
by > 3. Note that r +s+t+k =2p— 2. By (3.10) and (3.11), we can obtain
that s=k=p—2. Therefore {v{,v8,..., 00} =1{3,5,...,2p—1}\ {p}, which
is impossible since % ¢ S. This completes the proof. ([

Now, we give the proof of Theorem 1.6 for the case n = 2p.

Proof of Theorem 1.6 for n = 2p. It is easy to verify that the sufficiency is true.
N ext, we prove the necessity. Firstly, we deal with the case p = 2. Since % / % =
3¢ F, 1/2=2¢F, and 2/3 =38 ¢ Fy, S can not contain both z and y,

where (z, y)E{(3,4) (i,%) (% %)} Hence, if € S, then S C {0,1 ,é,;,%

fieS, then S C{0,1,4,5,2} or S C {0,1,;,;,}1} If neither & nor 2
belong to S, then S C {0,1, %, %, %} Therefore, Theorem 1.6 holds for n =4.

Now, we suppose that p > 3.

By Lemma 3.3, we just need to consider the following two cases:

(1) S contains fractions whose denominators are 2p but no fraction whose
denominator is p;

(2) S contains fractions whose denominators are p but no fraction whose
denominator is 2p.

Firstly, we deal with the case (1). Similar to the discussion of Theorem

1.6, wehaveS:{l,é,...,zp} orSf{ L ...,M} if0¢ Sand S =

’ 2p)
{07;...,21)} or S = { ’2117,“.’M} if 1 ¢ S. All forms are impossible
since 5 ¢ S. Hence, {0,1} C S. Let
aip ag ar X1 Ts Y1 Yk
S=40.1, 5 2 5o an gk
{ ) Y p72p7 ’2p’2ul7 72usﬂvl7 ’[}k}

with r > 1 and 7 + s + k = 2p — 2, where the fractions are irreducible and
(ip) =1 (1< i< s), (v,,2) = 1 (15 < k). By /2 = %% ¢ fy,, we

pz;
have
(3.12) leaz-,%gzpfmgsms;'ss).
J
@ /Yi ;ij € Fyy, we have

(3.13) yila, Y <op-1(1<i<r, 1<j<h).
vj
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Let (a1,a2,...,a,) = d. If d =1, then z; = 1 (1 < i < 5) and y;

1 (1 <j < k). By Lemma 3.1, we have S C {O,l,;,é,...,%} or § C
{O,l, 35 2p,..., 2’;;1} Now, we assume that d > 1.

If r > 2, then 2d < 112a<xal <2p—1, and so d < p. Let 51 —SU{ }.
One can easily prove that Q(S1) C Fy,. By |S1] = 2p + 1 and Theorem

11 1 2p—1
1.3, we have S = {0,1,2,3,...,%} or §1 = {O,l,gp,%,..., ’;p } Both
forms are impossible since = ¢ S1. Hence, r = 1 and d = a; > 3. Let
X; =44 (1<i<s)and Y = M (1 <j <k). Then S can be rewritten as
s=form o o o wo ol
2 OX, 22X, 2K, Y, Yy Yy

Clearly, all of 2X;’s and Y}’s are distinct. By (3.12), (3.13) and S C Fj,, we
have a1/2 < X; <2p—1, (X;,p) =land a1 <Y; <2p—1, (Y},2p) = 1. Thus,
-1 2p—1—
:|5|§2+(2p—1—a12 )+ (% : L) =sp+1-a
So a; < p+ 1. By (a1,2p) = 1, we have a1 < p. We observe that for p < n <
2p — 1, if (n,Y;) = 1 for some j € [1,k], then §* ¢ S. Otherwise, - ‘}’,—; =

7 2n

% € Fy, which is impossible since 2n > 2p and (2n, Y;) = 1. Therefore,

“ B ¢S(Vep+220-1)),

202977, + 1) ¢S (Yj € (ar,p—2)), 20— 1)
S

i—1)
where «; is an integer such that 2%Y; € [p + 1,2p — 2]. Furthermore, when
2%Y; > p+ 1, we also get that

ai
1y oy, ¢
Let
.y, - [ w -
A= {2(2,1])/]_’_1) }/J S (a1,p 2]}7 B {Q(Y}—l) }/j c [p—|—272p 1]}

Then |A| +|B| = k. Since a1/2 < X; <2p—1and a1/2 < (2p—1)/2 < p, it
follows from (X;,p) = 1 that

Gx ) Sa v e i) AUB )

Hence,s§2p717‘“Tflfk71. Thus,

-1
2= 5| <3+ (2p - —k)+ k= =,
which implies that a; = 3 and p > 5. At this point, one can easily get that
33 3 3 3 3
3.15 S:{O,l,f,f,...,i,—,— } AUB
( ) 4°6 2(2p—1) Yl Y2 Yk \( )
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By 2p —3 > p and (3,2p — 3) = 1, we have 2( §§ S. Since the number

of Y’s with Y; € (3,p —2] is < p%, there are at least two odd integers
p+2 <my,mg < 2p—1 for which {2m , 2m2} C S. Hence, there exists an odd

integer m € [p + 2,2p — 5] such that 5> € S and p > 7. Let
3
max{me[p+272p—5] 2J(m ES}

Then m ¢ S. By (3.15), we have my+2 = 2%/Y;+1 for some Y; € (3,p—2].

Since 2%7Y; = mo+1 > p+1, it follows from (3.14) that 57— ¢ S, contradictory
to the deﬁmtlon of my.
Now, we deal with the case (2). Similarly, we have {0,1} C S. Let

goJo b bm Ty Wk
77p)"')p?2ul7"'72u5?v17"')vk

with ¢ > 1 and t + s + k = 2p — 2, where the fractions are irreducible and

. . . T 2biu]' 7
(uip) =1 (1<i<s), (vj,2p) =1 (1< j < k). By &/5h = 08 € Fyy, we

have
Ql‘jlbi <1§i§t, 1§]§S)
bi’Uj

b i _ 2
By % /Uj oy € Fap, we have

yilbi or Zb(1<i<t 1<) <k).

Let (b1,...,b) =d. Thenxi|dfor1§i§sandyj | dor % |dfor1§j§k.
Suppose that the number of y;’s with y; | d is k1, and the number of y;’s with
y;j fd and & 2. | d is m. Then k; +m = k. Without loss of generality, we may
assume that yj | dfor 1 <j <k Let s+k; =1and

2u;d v;d 2up, 45d

s 1<i<s), Xepi= : (1<i<k)andY,;= :
i Yi Yki1+5

X, =

Clearly, we have 21Yj. Then S can be rewritten as
b by d d 2d 2d
S:{o,Ll,...,t,7...,,,...,}.
P p Xy X1 Y
Assume that by < by < -+- < bs. Thentd < by <p—1andsot < %. For
lgigl,by%‘/%:bf—giepgp,wehave

(3.16) btd <wp—-1(1<i<l).

For 1 <j<m, by %/27‘? = € Fy,, we have that, if 2d | b;, then
J

2pd

biY

(3.17) S0

<2p 1,
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if 2d { by, then

bY;
(3.18) % <2p—1.

We distinguish into two cases according to 2 <t < % and t = 1.
Case 1. 2 <t < 221, By (3.16), (3.17), (3.18) and S C F,, we have

2p—1 2(2p—1)
—

(3.19) d<X¢§{ J(lgigl),2d<Yj§L (1<j<m).

It follows from 2 1Y that

)+(2pt_1—d+%)=2(2pf_l>+t—2d+g.

= L and p > 5. Tt follows that

22p—1 3 2(2p —1 -1 3
|S|§%+t <max{%+t:t€{2,pi}}—f<2p,

2p —1
S| <2+ t+ (2

Ifd>2,then2<t<Z

2 2 2

a contradiction. Thus, d = 1. At this point, we have 2 <t < p —1 and
2(2p—1 1
=19 < # +it 3

If3<t<p-—1,then p>5and @ +t+4 % < 2p, a contradiction. Hence,
t = 2. Since Yj # p, it follows from (3.19) and d = 1 that

2p=18<4+(p-1-d)+(p—-d-1)=4+(p—2)+(p—2)=2p.

This shows that [ = m = p — 2, and so {X;1,Xs,..., X;} = {2,3,...,p— 1}
and {Y1,Ys,..., Y} = {3,5,...,2p — 1} \ {p}. By (3.16), we get by < 2. So
{b1,b2} = {1,2}. Therefore,

11 122 2 2 2 2
S=<0,1,=,—,...,—, =, —,...,—— p=<0,1,—,—, ..., — p.
2°3 p 3’5 2p —1 34 2p

Case 2. t = 1. In this case, d = by. By (3.16), (3.18) and S C Fy,, we have
by <X;<2p-1, X;#p(1<i<land2b; <Y; <2p—-1, 2p,Y;)=1(1<
j < m). Note that for p <n <2p—1, if (n,Y;) =1 for some j € [1,m], then
b ¢ S. Otherwise, %/% = ;% € Fy, which is impossible since (2n,Y;) =1
m ¢ S fOI’

o ¢ S for p < Y; < 2p— 1, where a;  is the integer such
that p < 299Y; < 2p. Moreover, if 247Y; > p+ 1, then

and 2n > 2p. By similar discussion with case (1), we have

(3.20) QO‘JY — ¢S
and if p <Y; +1 < 2p, then
(3.21) by ¢85.
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Let
A—{bil-% <Y»<}B—{ b <Y; <2 1}
1= 20V, +1° 1 i<bPr B1= Yj—lp P
and
by by by 2b 2by 2b;
S) = {01 ———} ALUBY).
bi+1b4+2 " "2p-1"Y, Yo Y,, \(A1UBy)

Clearly, S C S;. Since all Y;’s are odd, we have ANB = (), and so |A1|+|B1| =
m. Hence,
p=|5<|S1|=24+2p—1-by—m)+m=2p+1-10y.
This shows that by =1 and [ = 2p — 3 — m. And now,
1

11 2
(322) S = Sl = {0,1,5757 2p— 1 Yl Y7}
2p
1
4’

Forp=3,by2=2b; <Y; <2p—1=5and 1=(Y},2p) = (Y;,6), we have

m < 1. When m = 0, (3.22) implies that S = {0 1,1 %} When m =1,

59 %
we have Y7 = 5. It follows from (3.22) that S = {0 1,311 2}

’ 27 37575
Let p > 5. Since |A:| = {Y; : Y € (2, p — 2]} < B=, there is at least one
odd integer a e [p+2,2p — 1] such that 1 € 5. We w1ll show that 5~ € S.

Assume that 5= ¢ S, then there is an odd integer a € [p+2,2p — 3] for Wthh
E € S. Let

1
rnax{aze[p—i—2,2p—3]:2J(a7 765}:%.

Then — 2 ¢ S. By the definition of A; and (3.22), we have ag+2 =2%Y; +1
for some Y; € (2,p — 2]. However, since ag = 2%Y; —1 > p, it follows from
(3.20) that % ¢ S, a contradiction with the deﬁnition of ag. Thus es.

Similarly, we can prove that 21]%3 eSiHtH{Y;:Y; € (2,p—2]} <=
Subcase 2.1. {Y; :Y; € (2,p—2]}| =

11 1 1 2
{07177a77"'a77 o
2°3 p 2p—1"3

) 2p 1
In this case,

p=3
2
22 e

1 2 2p-3 7 12
By S 1/2p 3 = 2(2‘; 5 ¢ Iy, and p+3/3 = 2(p+3 ¢ Fy,, we have 2p—3 ¢S
and 3 ¢ S, respectively. By (3.22) and the definitions of A; and By, we

obtam—GSandmeS Thus,
11 1 1 1 2 2 2 2
{0717777%"7777777757,"'5777}gS
23 p'2p—12p-4"3"5 p—2"p+4

For p = 5, the cardinality of the left set above is 10 = 2p. Therefore,
s={01,4,4,3, 541,22}

7273747526792379
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By2p2—73¢5and IﬁES, we have p # 7. For p > 11, let
max{Y; :Y; € [p+2,2p—-5]} =Y.

One should notice that such Y does exist since p+4 < 2p—5 and p% € S. Then
Yi+2 ¢ S. By (3.22), we have %ﬂ € S. However, it follows fromp < Y+1 < 2p
and (3.21) that %H ¢ S, a contradiction.

Subcase 2.2. [{Y; :Y; € (2,p—2]}| < 25°. In this case, {2[)1—_1, 21)%3} cs.

: 1 2 _ 2p-3 n 1 2 2p-1 n 2
Since 2p_1/2p_3 = 2(2’;_1) ¢ Fy, and 21)_3/2p_1 = 2(21;_3) ¢ Fy,, both 553
and 2p2_1 do not belong to S.

Now, we prove that m = 0. If {Y; : Y; € [p+2,2p — 1]}| > 1, then we
can deduce a contradiction by similar discussion with Subcase 2.1. Hence,
{Y; : Y € [p+2,2p— 1]} = 0. By (3.22), we have 55 € S. If |{Y; : V] €

min{2%Y; +1:Y; € (2,p — 2]} = 2%0Yj, + L.

Then 2%0Y;, + 1 = p + 2. Otherwise, 2%*0Y;, —1 > p + 2. From (3.20), we

deduce that W ¢ S which contradicts with (3.22). At this point, by
0Y;,—

p%/%o = % € F5,, we have (Yj,,p+ 3) > 1, which is impossible since

(2%90Yj,,p+3) = (p+1,p+3) =2. Thus, {Y; :Y; € (2,p—2]}| =0, and so
_ _ 11 1 .

m = (0. Therefore, S = {0, L350+, 2{)—_1}. This completes the proof for the

case n = 2p. ([

References

[1] R. Balasubramanian and K. Soundararajan, On a conjecture of R. L. Graham, Acta
Arith. 75 (1996), no. 1, 1-38. https://doi.org/10.4064/aa-75-1-1-38

[2] R. Boyle, On a problem of R. L. Graham, Acta Arith. 34 (1977/78), no. 2, 163-177.
https://doi.org/10.4064/aa-34-2-163-177

[3] Y. F. Cheng and C. Pomerance, On a conjecture of R. L. Graham, Rocky Mountain J.
Math. 24 (1994), no. 3, 961-975. https://doi.org/10.1216/rmjm/1181072382

[4] R. L. Graham, Unsolved problem 5749, Amer. Math. Mon. 77 (1970), 775.

[6] M. Szegedy, The solution of Graham’s greatest common divisor problem, Combinatorica
6 (1986), no. 1, 67-71. https://doi.org/10.1007/BF02579410

[6] W. Y. Vélez, Some remarks on a number theoretic problem of Graham, Acta Arith. 32
(1977), no. 3, 233-238. https://doi.org/10.4064/aa-32-3-233-238

[7] L. Wang, Farey sequence and Graham’s conjectures, J. Number Theory 229 (2021), 399—
404. https://doi.org/10.1016/j. jnt.2020.10.013

[8] R. Winterle, A problem of R. L. Graham in combinatorial number theory, in Proc.
Louisiana Conf. on Combinatorics, Graph Theory and Computing (Louisiana State Univ.,
Baton Rouge, La., 1970), 357-361, Louisiana State Univ., Baton Rouge, LA, 1970.

[9] A. Zaharescu, On a conjecture of Graham, J. Number Theory 27 (1987), no. 1, 33—40.
https://doi.org/10.1016/0022-314X(87)90048-5


https://doi.org/10.4064/aa-75-1-1-38
https://doi.org/10.4064/aa-34-2-163-177
https://doi.org/10.1216/rmjm/1181072382
https://doi.org/10.1007/BF02579410
https://doi.org/10.4064/aa-32-3-233-238
https://doi.org/10.1016/j.jnt.2020.10.013
https://doi.org/10.1016/0022-314X(87)90048-5

ON THE STRUCTURE OF CERTAIN SUBSET OF FAREY SEQUENCE

XING-WANG JIANG

DEPARTMENT OF MATHEMATICS
LUOYANG NORMAL UNIVERSITY
LuoyanG 471934, P. R. CHINA
Email address: xwjiangnj@sina.com

Ya-L1 L1

SCHOOL OF MATHEMATICS AND STATISTICS
HENAN UNIVERSITY

KAIFENG 475001, P. R. CHINA

Email address: njliyali@sina.com

931



