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ANNIHILATOR IDEALS OF SIMPLE MODULES OF

RESTRICTED QUANTIZED ENVELOPING ALGEBRA

Yu Wang

Abstract. Let U be the restricted quantized enveloping algebra Ũq(sl2)

over an algebraically closed field of characteristic zero, where q is a primi-
tive l-th root of unity (with l being odd and greater than 1). In this paper

we show that any indecomposable submodule of U under the adjoint ac-

tion is generated by finitely many special elements. Using this result we
describe all ideals of U . Moreover, we classify annihilator ideals of simple

modules of U by generators.

1. Introduction

There has been momentous attention to the classification of ideals of algebras
in history. For instance, Fisher et al. [3, 10, 11] discussed that under certain
conditions a group algebra over an arbitrary field is a principal ideal ring.
Subsequently Jespers and Okniński [4] gave a sufficient and necessary condition
for a semigroup algebra to be a principal ideal ring. Catoiu et al. [1,8,12] showed
that some (quantized) enveloping algebras are principal ideal rings. It is worth
mentioning that Siciliano and Usefi in [12] raised an open question that under
what conditions a Hopf algebra is a principal ideal ring. It seems that this
problem is interesting and difficult to solve in the near future. Not long ago
we in [16,17] proved that finite dimensional pointed Hopf algebras of rank one
are principal ideal rings and described all annihilator ideals of indecomposable
modules. In particular, we [15,18] characterized all ideals and annihilator ideals
of indecomposable modules of the Radford Hopf algebras. In this paper, we
study the ideals of small quantum groups associated to sl2 using the adjoint
action.

We briefly introduce the history of restricted quantized enveloping algebra.
The representation theory of restricted quantized enveloping algebra dates back
to Suter [14] and Xiao [19]. They introduced different versions of restricted
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quantized enveloping algebras associated to sl2, and classified all finite dimen-
sional indecomposable modules over them. In the light of the work of Suter,
Kondo and Saito [7] explicitly provided the decomposition rules of the tensor
product of all indecomposable modules of Uq(sl2), where q is a primitive 2p-th
root of unity with p ⩾ 2. Lately, Su and Yang [13] characterized the Green
ring of Uq(sl2) by generators and relations. We study another versions of small

quantum groups Ũq(sl2), where q is a primitive l-th root of unity (with l being
odd and greater than 1). All the finite dimensional indecomposable modules
were completely determined by Chari and Premet [2]. Applying the results in

[2], we first describe indecomposable submodules of Ũq(sl2) under adjoint ac-
tion and obtain generators of them, and then characterize all two-sided ideals

of Ũq(sl2). Moreover, we classify all annihilator ideals of simple modules of

Ũq(sl2) by generators.
Throughout, we work over an algebraically closed field k of characteristic

zero. Unless other stated, all algebras, Hopf algebras and modules are vector
spaces over k; all modules are finite dimensional; all maps are k-linear; ⊗means
⊗k. We assume that the reader has at least a passing familiarity with Hopf
algebras and quantum groups; see [5, 9] for background.

2. Indecomposable modules

In this section, we recall the basic properties and the construction of inde-

composable representations of Ũq(sl2). We assume that q is a primitive l-th
root of unity with l being odd and greater than 1. Recall that the restricted

quantized enveloping algebra U = Ũq(sl2) over k is generated by E,F,K asso-
ciated with the following relations (see [2]):

KEK−1 = q2E, KFK−1 = q−2F,(2.1)

[E,F ] =
K −K−1

q − q−1
,(2.2)

Kl = 1, El = 0, F l = 0.(2.3)

It is well known that U admits a Hopf algebra structure determined by

∆(K) = K ⊗K, S(K) = K−1, ε(K) = 1,(2.4)

∆(E) = E ⊗K + 1⊗ E, S(E) = −EK−1, ε(E) = 0,(2.5)

∆(F ) = F ⊗ 1 +K−1 ⊗ F, S(F ) = −KF, ε(F ) = 0.(2.6)

It is clear that U has a basis {EiF jKs | 0 ⩽ i, j, s ⩽ l − 1}. In addition, the
Casimir element

(2.7) Cq = FE +
qK + q−1K−1

(q − q−1)2
= EF +

q−1K + qK−1

(q − q−1)2
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is in the center Z(U) of U , and the minimal annihilating polynomial of Cq is
(see [6, equation (3.91)])

ψ(x) =

l−1∏
j=0

(x− βj), where βj =
qj + q−j

(q − q−1)2
.

For n ∈ N, set [n] = [n]q = qn−q−n

q−q−1 . For 0 ⩽ r ⩽ l − 1, if (n, r) ̸=
(0, 0), let V (n, r) denote the Weyl module of dimension nl + r with a basis
v0, v1, . . . , vnl+r−1, on which the action of U is given by

K · vi = qr−1−2ivi,(2.8)

E · vi = [r − i]vi−1,(2.9)

F · vi = [i+ 1]vi+1,(2.10)

for 0 ⩽ i ⩽ nl + r − 1. Let

(2.11) Ω = FE +
qK + q−1K−1 − 2

(q − q−1)2
= Cq −

2

(q − q−1)2
∈ Z(U).

For the simple U -module, we have the following proposition.

Proposition 2.1 ([2, Proposition 3.2]).

(1) Each simple U -module is isomorphic either to V (0, r) for some 1 ⩽ r ⩽
l − 1 or to V (1, 0).

(2) (
Ω−

[r
2

]2)
· V (n, r) = 0,

where [ r2 ] = [ (l+1)r
2 ].

The dual M∗ of a U -module M is defined by using the antipode:

(u · f)(m) := f(S(u) ·m) for all u ∈ U, f ∈M∗ and m ∈M.

Fix a basis of M . Then the action of u ∈ U on M∗ in the dual basis is the
transpose of the action of S(u) on M in the original basis. It is clear that the
dual of an indecomposable representation is also indecomposable. Therefore,
the dual Weyl modules form another class of indecomposable modules for U .
Now we write the dual module of V (n, r) explicitly. V (n, r)∗ has a basis v∗0 ,
v∗1 , . . . , v

∗
nl+r−1 on which the action of K,E, F is given by

K · v∗i = q−(r−1−2i)v∗i ,(2.12)

E · v∗i = −q−(r−3−2i)[r − i− 1]v∗i+1,(2.13)

F · v∗i = −qr−1−2i[i]v∗i−1,(2.14)

for 0 ⩽ i ⩽ nl + r − 1. By [2, Lemma 3.4], we have that the modules V (0, r)
and V (1, 0) are self-dual.
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Let X(r) be a 2l-dimensional module with basis {x0, x1, . . . , xl−1, w0, w1,
. . . , wl−1} on which the generators of U act as follows:

K · xi = ql−r−2i−1xi,

K · wi = qr−2i−1wi,

F · xi = [i+ 1]xi+1,

F · wi = [i+ 1]wi+1,

E · xi = [l − r − i]xi−1,

E · wi = [r − i]wi−1 +

[
l − r − 1 + i

i

]
xi−r−1+l,

for 0 ⩽ i ⩽ l − 1. And we assume that xi and wi are zero if i < 0 or i > l − 1.
By [2, Corollary 3.9], we have that the action of Ω on X(r) is not semisimple
and X(r)∗ ∼= X(r).

For n ⩾ 0, 0 < r ⩽ l − 1 and λ ∈ C, let V λ(n, r) be an (nl + r)-dimensional
vector space with basis {v0, v1, . . . , vnl+r−1} and the action of U on which given
by

K · vi = qr−1−2ivi,

F · vi = [i+ 1]vi+1,

E · vi = [r − i]vi−1, i ̸≡ 0 (mod l),

E · vi = [r]vi−1 + [r](1 + λ)vi+l−1, i ≡ 0 (mod l),

where 0 ⩽ i ⩽ nl+ r− 1. Let V (λ, n, r) be the submodule of V λ(n, r) spanned
by {v0, v1, . . . , vnl−1} and V (∞, n, r) the submodule spanned by {vr, vr+1, . . .,
vnl+r−1}.

By definition, it is clear that V λ(n, r)∗ is an (nl + r)-dimensional vector
space with basis {v∗0 , v∗1 , . . . , v∗nl+r−1} and the action of U on which given by

K · v∗i = q2i+1−rv∗i ,

F · v∗i = −[i]qr−1−2iv∗i−1,

E · v∗i = −q2i+3−r[r − i− 1]v∗i+1, i ̸≡ −1 (mod l),

E · v∗i = −q1−r[r]v∗i+1 − q1−r[r](1 + λ)v∗i+1−l, i ≡ −1 (mod l),

for 0 ⩽ i ⩽ nl+ r− 1. It is clear that V (λ, n, r)∗ is the submodule of V λ(n, r)∗

spanned by {v∗0 , v∗1 , . . . , v∗nl−1} and V (∞, n, r)∗ is the submodule of V λ(n, r)∗

spanned by {v∗r , v∗r+1, . . . , v
∗
nl+r−1}.

For the basic properties of the indecomposable representations of U , we have
the following proposition.
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Proposition 2.2 ([2, Proposition 4.1]). LetM be an indecomposable U -module.
Then there exists 0 ⩽ r ⩽ l−1

2 such that(
Ω−

[r
2

]2)2

·M = 0.

If r = 0, Ω is zero on M .

For 0 ⩽ r ⩽ l−1
2 , let Cr denote the category of U -modules M with the

property (
Ω−

[r
2

]2)2

·M = 0.

For the characterization of all indecomposable U -modules, we have the fol-
lowing proposition.

Proposition 2.3 ([2, Theorem 4.2]). Let M be an indecomposable object of
Cr.

(1) If r = 0, then M is isomorphic to V (1, 0).
(2) If r > 0 and Ω is semisimple, then M or M∗ is isomorphic to precisely

one of V (n, i), V (λ,m, i) and V (∞,m, i), where i = l − r or r, n ⩾ 0
and m > 0.

(3) If Ω is not semisimple on M , then r > 0 and M is isomorphic to X(r).

We end this section by giving the following result which will be used in the
next section.

Proposition 2.4. If M is a finite dimensional indecomposable U -module, then
M is generated by finitely many elements v1, v2, . . . , vt such that K · vi = qmivi
for mi ∈ N and 1 ⩽ i ⩽ t.

Proof. According to the constructions of V (n, r), V (λ,m, r), V (∞,m, r) and
X(r), it is clear that the basis of them are eigenvectors of the action of K. And
so is their dual modules. □

3. Annihilator ideals of simple modules

In this section, we shall describe all ideals of U using the adjoint action. And
then we determine the generators of annihilator ideals of simple U -modules. For
any a ∈ U , we write ∆(a) = Σa1⊗a2. We can consider U as a U -module under
the following action:

(ada)b =
∑

a1bS(a2) for a, b ∈ U.

For any a ∈ U , we denote [a] the submodule of U generated by a under the
adjoint action and (a) the two-sided ideal of U generated by a. It is obvious
that [a] ∈ (a).
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Proposition 3.1. Let V be any indecomposable U -submodule of U under
the adjoint action. Then there exist integers n1, . . . , ns,m1, . . . ,mk with 0 ⩽
ni,mj ⩽ l − 1 and polynomials fi(Ω,K), gj(Ω,K) for 1 ⩽ i ⩽ s and 1 ⩽ j ⩽ k
such that

V = [En1f1(Ω,K), . . . , Ensfs(Ω,K), Fm1g1(Ω,K), . . . , Fmkgk(Ω,K)].

Proof. According to Proposition 2.4, we have that each indecomposable U -
submodule of U under the adjoint action is generated by finitely many eigen-
vectors of adK. Let u =

∑
i,j,p aijpE

iF jKp ∈ V be one of the generators with

weight qt for 0 ⩽ t ⩽ l − 1. It is clear that

(adK)u = KuK−1 =
∑
i,j,p

q2i−2jaijpE
iF jKp = qt

∑
i,j,p

aijpE
iF jKp.

It follows that q2i−2j = qt if aijp ̸= 0. Hence when aijp ̸= 0, we have 2i− 2j =
t + dl, where d ∈ {0, 1,−1,−2}. If d ∈ {0, 1}, then we can rewrite u as the

form
∑

j E
j+ t+dl

2 F jhj(K) for some polynomials hj(K). If d ∈ {−1,−2}, then
we can rewrite u as the form

∑
iE

iF i− t+dl
2 hi(K) for some polynomials hi(K).

By (2.7) and (2.11), we can replace each factor EF by the element Ω modulo

a polynomial in K. Thus, u can be rewritten in the form of E
t+dl

2 f(Ω,K)

(d ∈ {0, 1}) or F− t+dl
2 g(Ω,K) (d ∈ {−1,−2}) for polynomials f(Ω,K) and

g(Ω,K). Hence we complete the proof. □

Proposition 3.2. Let I be any non-zero two-sided ideal of U . Then there exist
integers 0 ⩽ n1, . . . , ns,m1, . . . ,mk ⩽ l− 1 and polynomials fi(Ω,K), gj(Ω,K)
for 1 ⩽ i ⩽ s, 1 ⩽ j ⩽ k such that

I = (En1f1(Ω,K), . . . , Ensfs(Ω,K), Fm1g1(Ω,K), . . . , Fmkgk(Ω,K)).

Proof. Let I be a non-zero two-sided ideal of U . Then I is a submodule of U
under the adjoint action. It follows from Proposition 3.1 that

I =

s∑
i=1

[Enifi(Ω,K)] +

k∑
j=1

[Fmjgj(Ω,K)].

Noting that each Enifi(Ω,K), Fmjgj(Ω,K) ∈ I, we obtain that

(En1f1(Ω,K), . . . , Ensfs(Ω,K), Fm1g1(Ω,K), . . . , Fmkgk(Ω,K)) ⊆ I.

On the other hand,

I =

s∑
i=1

[Enifi(Ω,K)] +

k∑
j=1

[Fmjgj(Ω,K)]

⊆ (En1f1(Ω,K), . . . , Ensfs(Ω,K), Fm1g1(Ω,K), . . . , Fmkgk(Ω,K)).

It follows that

I = (En1f1(Ω,K), . . . , Ensfs(Ω,K), Fm1g1(Ω,K), . . . , Fmkgk(Ω,K)). □
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Theorem 3.3. For 1 ⩽ r ⩽ l − 1, the annihilator ideal of V (0, r) is(
Ω−

[r
2

]2
, (K − qr−1)(K − qr−3) · · · (K − q−(r−1))

)
.

Proof. Let

I = (En1f1(Ω,K), . . . , Ensfs(Ω,K), Fm1g1(Ω,K), . . . , Fmkgk(Ω,K))

be the annihilator ideal of V (0, r). By (2.8), (2.9) and (2.10), we have that

Ω · vi = FE · vi +
qK + q−1K−1 − 2

(q − q−1)2
· vi

= [i][r − i]vi +
qr−2i + q2i−r − 2

(q − q−1)2
vi =

[r
2

]2
vi

for 0 ⩽ i ⩽ r − 1 and

(K − qr−1) · v0 = 0, (K − qr−3) · v1 = 0, . . . , (K − q−(r−1)) · vr−1 = 0.

Hence it follows that(
Ω−

[r
2

]2
, (K − qr−1)(K − qr−3) · · · (K − q−(r−1))

)
⊆ I.

Since I is the annihilator ideal of V (0, r), we obtain that

Enjfj(Ω,K) · vi = 0, Fmpgp(Ω,K) · vi = 0

for 0 ⩽ i ⩽ r−1, 1 ⩽ j ⩽ s and 1 ⩽ p ⩽ k. If nj ⩾ r, then Enjfj(Ω,K) ∈ (Er).
If nj ⩽ r − 1, noting that fj(Ω,K) acts on vi as multiplied by a scalar and
Enj ·vi ̸= 0 for nj ⩽ i ⩽ r−1, we have fj(Ω,K)·vi = 0 for nj ⩽ i ⩽ r−1. Since
l is the degree of the minimum annihilator polynomial of Ω, we may assume
that

fj(Ω,K) =

(
Ω−

[r
2

]2)l−1

hj,1(K) + · · ·+
(
Ω−

[r
2

]2)
hj,l−1(K) + hj,l(K),

where hj,a(K) are polynomials of K for 1 ⩽ a ⩽ l. Hence fj(Ω,K) · vi =
hj,l(K) · vi = 0 for nj ⩽ i ⩽ r − 1. Since K · vi = qr−1−2ivi, we have
hj,l(q

r−1−2i) = 0 for nj ⩽ i ⩽ r − 1. Hence

y − qr−1−2nj |hj,l(y), y − qr−1−2(nj+1) |hj,l(y), . . . , y − qr−1−2(r−1) |hj,l(y).
So we suppose

hj,l(y) = (y − qr−1−2nj )(y − qr−1−2(nj+1)) · · · (y − qr−1−2(r−1))aj(y)

for some aj(y) ∈ k[y]. Hence for 1 ⩽ j ⩽ s, we have

Enjfj(Ω,K)

= Enj

(
Ω−

[r
2

]2)l−1

hj,1(K) + · · ·+ Enj

(
Ω−

[r
2

]2)
hj,l−1(K)

+ Enj (K − qr−1−2nj )(K − qr−1−2(nj+1)) · · · (K − qr−1−2(r−1))aj(K)
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∈
(
Ω−

[r
2

]2
, (K − qr−1)(K − qr−3) · · · (K − q−(r−1)), . . . , Er−1(K − q−(r−1))

)
.

We shall show that(
Ω−

[r
2

]2
, (K − qr−1)(K − qr−3) · · · (K − q−(r−1)), . . . , Er−1(K − q−(r−1)), Er

)
=

(
Ω−

[r
2

]2
, (K − qr−1)(K − qr−3) · · · (K − q−(r−1))

)
.

Note that

E(K − qr−1)(K − qr−3) · · · (K − q−(r−1))

− (K − qr−1)(K − qr−3) · · · (K − q−(r−1))E

= (1− q2r)EK(K − qr−3) · · · (K − q−(r−1))

∈ ((K − qr−1)(K − qr−3) · · · (K − q−(r−1))).

Since 1− q2r ̸= 0 and K is invertible, we have

E(K − qr−3)(K − qr−5) · · · (K − q−(r−1))

∈ ((K − qr−1)(K − qr−3) · · · (K − q−(r−1))).

Similarly, we can prove

Eb(K − qr−1−2b)(K − qr−1−2(b+1)) · · · (K − qr−1−2(r−1))

∈ ((K − qr−1)(K − qr−3) · · · (K − q−(r−1)))

for 1 ⩽ b ⩽ r. Hence for 1 ⩽ j ⩽ s,

Enjfj(Ω,K) ∈
(
Ω−

[r
2

]2
, (K − qr−1)(K − qr−3) · · · (K − q−(r−1))

)
.

In a similar way, we can prove that

Fmpgp(Ω,K) ∈
(
Ω−

[r
2

]2
, (K − qr−1)(K − qr−3) · · · (K − q−(r−1))

)
for 1 ⩽ p ⩽ k. Hence I = (Ω−

[
r
2

]2
, (K−qr−1)(K−qr−3) · · · (K−q−(r−1))). □

Proposition 3.4. The annihilator ideal of V (1, 0) is

(Ω, (K − ql−1)(K − ql−3) · · · (K − q−(l−1))).

Proof. The proof is similar to that of Theorem 3.3. □

Proposition 3.5. For 1 ⩽ r ⩽ l − 1,(
Ω−

[r
2

]2
, (K − qr−1)(K − qr−3) · · · (K − q−(r−1))

)
can not be any of the annihilator ideals of indecomposable modules except
V (0, r).
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Proof. Set I = (Ω −
[
r
2

]2
, (K − qr−1)(K − qr−3) · · · (K − q−(r−1))). Consider

the basis element vr in V (n, r) with n ⩾ 1. Note that K · vr = q−r−1vr. Since

(K − qr−1)(K − qr−3) · · · (K − q−(r−1)) · vr
= (q−r−1 − qr−1)(q−r−1 − qr−3) · · · (q−r−1 − q−(r−1))vr ̸= 0,

it follows that I can not be the annihilator ideal of V (n, r) with n ⩾ 1. Consider
v0 ∈ V (1, 0). Note that K · v0 = q−1v0. Since

(K − qr−1)(K − qr−3) · · · (K − q−(r−1)) · v0
= (q−1 − qr−1)(q−1 − qr−3) · · · (q−1 − q−(r−1))v0 ̸= 0,

it follows that I can not be the annihilator ideal of V (1, 0). Consider x0 ∈ X(r)
and vr in V (λ,m, r) or V (∞,m, r). Note that K · x0 = q−r−1x0 and K · vr =
q−r−1vr. Similarly,

(K − qr−1)(K − qr−3) · · · (K − q−(r−1)) · x0 ̸= 0

and
(K − qr−1)(K − qr−3) · · · (K − q−(r−1)) · vr ̸= 0.

Hence I can not be the annihilator ideal of X(r), V (λ,m, r) or V (∞,m, r).
Using the same technique, we prove that I can not be any of the annihilator
ideals of their dual modules. □

Proposition 3.6. The following ideal

(Ω, (K − ql−1)(K − ql−3) · · · (K − q−(l−1)))

can not be any of the annihilator ideals of indecomposable modules except
V (1, 0).

Proof. The proof is similar to that of Proposition 3.5. □
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