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TOEPLITZ-TYPE OPERATORS ON THE FOCK SPACE F 2
α

Chunxu Xu and Tao Yu

Abstract. Let j be a nonnegative integer. We define the Toeplitz-type

operators T
(j)
a with symbol a ∈ L∞(C), which are variants of the tra-

ditional Toeplitz operators obtained for j = 0. In this paper, we study
the boundedness of these operators and characterize their compactness

in terms of its Berezin transform.

1. Introduction

For any positive parameter α, we consider the Gaussian measure

dλα(z) =
α

π
e−α|z|2dA(z),

where dA is the Euclidean area measure on the complex plane C, it’s easy to
show that dλα is a probability measure. The Fock space F 2

α consists of all
entire functions on C that are also in L2(C, dλα). F 2

α is a closed subspace
of L2(C, dλα) and F 2

α is a Hilbert space with inner product inherited from
L2(C, dλα):

⟨f, g⟩ =
∫
C

f(z)g(z)dλα(z).

Let L∞(C) be the space of the functions f on C such that

∥f∥∞ = ess sup{|f(z)| : z ∈ C} < ∞.

For z, w ∈ C, let Kz(w) = eαzw be the reproducing kernel of F 2
α, and let

kz = Kz

∥Kz∥ be the normalized reproducing kernel in F 2
α, where || · || denote the

norm of F 2
α. Each operator S on F 2

α induces a function S̃ on C, namely,

S̃(z) = ⟨Skz, kz⟩, z ∈ C.

We called S̃ the Berezin transform of S. For more information about Berezin
transform one refers to [16,17].

For any z ∈ C, define the operator Uz on F 2
α by Uzf = (f ◦ φz)kz, where

φz(w) = z − w for w ∈ C, then Uz is unitary and self-adjoint. For any S a
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bounded operator on F 2
α, define Sz to be the bounded operator on F 2

α given by
conjugation with Uz:

Sz = UzSUz.

It’s easy to check that S̃ ◦φz = S̃z. For any f, g ∈ F 2
α, let f⊗g be the rank-one

operator on F 2
α which is defined by

(f ⊗ g)h = ⟨h, g⟩f, ∀h ∈ F 2
α.

Let ej(z) =
√

αj

j! z
j(j ≥ 0). Then {ej}j≥0 is an orthonormal basis of F 2

α. The

operator Ej := ej ⊗ ej is in fact the orthogonal projection onto the subspace
generated by ej . For any z ∈ C, it is easy to check that

⟨UzE0Uzf, g⟩ = f(z)g(z)e−α|z|2 , ∀f, g ∈ F 2
α.(1.1)

By (1.1), the traditional Toeplitz operator Ta on F 2
α with the symbol a ∈

L∞(C) can be written as

Ta =
α

π

∫
C

UzE0Uza(z)dA(z),

where the integral converges in the weak operator topology.
Let D be the unit disk in the complex plane. The Bergman space A2(D) con-

sists of all analytic functions on D that are also in L2(D, dA), where L2(D, dA)
be the complex valued measurable functions on D such that

∥f∥2 :=

[∫
D
|f(z)|2dA(z)

] 1
2

< +∞.

For z ∈ D, let Wz on A2(D) by Wzf = (f ◦ φ)φ′, where φz(w) =
z−w
1−zw . Then

Wz is unitary and self-adjoint on A2(D). Englǐs [8] considered the more general
operator on A2(D) defined as

Ra :=

∫
D
WzRWza(z)dÃ(z), a ∈ L∞(D),(1.2)

where dÃ(z) = dA(z)
(1−|z|2)2 . Meanwhile, he showed that if R is a radial operator in

the trace class, then ||Ra|| ≤ ||R||tr||a||∞ and Ra is bounded on A2(D). Since
the operator R is an ℓ1 linear combination of the projections ζj = (

√
j + 1zj)⊗

(
√
j + 1zj), with the trace norm of R given by the correspondent ℓ1-norm of

its eigenvalues, the above result is equivalent to

T (j)
a :=

∫
D
WzζjWza(z)dÃ(z) and ||T (j)

a || ≤ ||a||∞(1.3)

for every integer j ≥ 0. More generally, let µ be a finite Borel measure on D,
and for j ≥ 0, Suárez defined the following Toeplitz-type operator with symbol
µ on the Bergman space (see [13]):

T (j)
µ :=

∫
D
WzζjWz(1− |z|2)−2dµ(z).(1.4)
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Suárez, using Carleson measure conditions, characterized the boundedness and

compactness of the operator T
(j)
µ on A2(D).

Based on the research of the above scholars, we consider similar operator on
the Fock space, and later found that the operator we defined is essentially a
localized operator. Let j be a nonnegative integer, we now define the following

Toeplitz-type operators T
(j)
a on the Fock space F 2

α:

⟨T (j)
a f, g⟩ = α

π

∫
C

⟨Uzf, ej⟩⟨ej , Uzg⟩a(z)dA(z), f, g ∈ F 2
α.(1.5)

Toeplitz operators have been widely studied in the contexts of Hardy and
Bergman spaces on various domains, and a large number of techniques and
methods have been developed over the past twenty years or so; see [12,15,16].
In [14], the authors give sufficient conditions for a densely-defined operator on
Fock space to be bounded or compact, under the boundedness condition. They
characterize the compactness of the operator in terms of its Berezin transform.
It is obvious that Tf is bounded when f ∈ L∞(C). However, the boundedness

of Toeplitz-type operators T
(j)
f is not so obvious when f ∈ L∞(C) and j ≥ 1.

In this paper, we will continue study the boundedness and compactness of the

operator T
(j)
f , where f ∈ L∞(C).

2. Boundedness of Toeplitz-type operators

The definition of the Weyl operator on L2(C, dλα) is as follows:

Wzw(ξ) = eαξ·z−
α
2 |z|2w(ξ − z).

Let w ∈ F 2
α, and f ∈ L∞(C), the Gabor-Daubechies localization operator L

(w)
f

on F 2
α defined by

⟨L(w)
f u, ξ⟩ =

∫
C

f(z)⟨u,Wzw⟩⟨Wzw, ξ⟩dv(z), ∀ u, ξ ∈ F 2
α.

So, the operator T
(j)
f defined in (1.5) is essentially a localization operator. Let

BC∞(C) be the space of all C∞(C) functions whose partial derivatives are
bounded. For w ∈ F 2

π , and f ∈ BC∞(C), Abreu, Lúıs and Faustino [1] showed
that

L
(w)
f = TD(w)f .

On the right side of the equation above, Toeplitz operator whose symbol is
obtained from the symbol of the localization operator by action of a differential
operatorD(w), whose coefficients are constants explicitly determined by w. For
more information one refers to [4, 6, 7, 9–11].

Englǐs [9] characterized the boundedness of the localization operator L
(w)
f

by Bargmann transform. In this section, we use another interesting method to
prove the boundedness of Toeplitz-type operators.

Theorem 2.1. If a ∈ L∞(C), then T
(j)
a is bounded on F 2

α.
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Proof. For any f, g ∈ F 2
α, we have

|⟨T (j)
a f, g⟩|(2.1)

≤ α

π

∫
C

|⟨Uzf, ej⟩||⟨Uzg, ej⟩||a(z)|dA(z)

≤ α

π
||a||∞

(∫
C

|⟨Uzf, ej⟩|2dA(z)
) 1

2
(∫

C

|⟨Uzg, ej⟩|2dA(z)
) 1

2

.

We just need to prove that there exists a positive constant M such that∫
C

|⟨Uzh, ej⟩|2dA(z) ≤ M ||h||2, h ∈ F 2
α.

Case 1: Let m,n ≥ j. We can calculate that∫
C

⟨Uzw
m, ej⟩⟨Uzwn, ej⟩dA(z)(2.2)

=

∫
C

⟨(z − w)meαzw, ej(w)⟩⟨(z − w)neαzw, ej(w)⟩e−α|z|2dA(z)

=

∫
C

〈
m∑

k1=0

Ck1
m (−1)k1wk1zm−k1

∞∑
l1=0

αl1zl1wl1

l1!
, ej(w)

〉

·

〈
n∑

k2=0

Ck2
n (−1)k2wk2zn−k2

∞∑
l2=0

αl2zl2wl2

l2!
, ej(w)

〉
e−α|z|2dA(z)

=

∫
C

〈
j∑

k1=0

Ck1
m (−1)k1wk1zm−k1

αj−k1zj−k1wj−k1

(j − k1)!
, ej(w)

〉

·

〈
j∑

k2=0

Ck2
n (−1)k2wk2zn−k2

αj−k2zj−k2wj−k2

(j − k2)!
, ej(w)

〉
e−α|z|2dA(z)

=
j!

αj

j∑
k1,k2=0

Ck1
m Ck2

n (−1)k1+k2
αj−k1αj−k2

(j − k1)!(j − k2)!

×
∫
C

zm+j−k1−k2zn+j−k1−k2e−α|z|2dA(z).

If m ̸= n, by (2.2), we get∫
C

⟨Uzw
m, ej⟩⟨Uzwn, ej⟩dA(z) = 0.
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If m = n ≥ j, by the proof process of (2.2),∫
C

|⟨Uzw
n, ej⟩|2dA(z)

=
πj!

αj+1

j∑
k1,k2=0

(−1)k1+k2Ck1
n Ck2

n

αj−k1αj−k2

(j − k1)!(j − k2)!

(n+ j − k1 − k2)!

αn+j−k1−k2

=
πj!

αn+1

j∑
k1,k2=0

(−1)k1+k2Ck1
n Ck2

n

(n+ j − k1 − k2)!

(j − k1)!(j − k2)!

=
πn!

αn+1

j∑
k1,k2=0

(−1)k1+k2Ck2
n Cj−k2

n+j−k1−k2
Ck1

j .

Let

Ij,n =

j∑
k1,k2=0

(−1)k1+k2Ck2
n Cj−k2

n+j−k1−k2
Ck1

j .

We prove next that Ij,n = 1. Construct a function

F (x, y) = (y − x)n(y − 1)j
n+j∑
k=0

yk(1 + x)n+j−k,

where x, y ∈ (0, 1).
It is easy to calculate that Ij,n is the coefficient of xjyn+j . The coefficient

of yn+j is

n∑
p=0

j∑
q=0

Cp
n(−x)pCq

j (−1)q(1 + x)n+j−p−q

=

n∑
p=0

Cp
n(−x)p(1 + x)n−p

(
j∑

q=0

Cq
j (1 + x)j−q(−1)q

)
= xj .

Then

Ij,n = 1.

Case 2: If m > j, n < j, or n > j, m < j, or m,n < j and m ̸= n, by the proof
process of (2.2), we have∫

C

⟨Uzw
m, ej⟩⟨Uzwn, ej⟩dA(z) = 0.

Case 3: If m = n < j, by a proof process similar to (2.2), we get∫
C

|⟨Uzw
n, ej⟩|2dA(z) =

πn!

αn+1
.
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Hence, ∫
C

⟨Uzw
m, ej⟩⟨Uzwn, ej⟩dA(z) =

{
πn!
αn+1 , m = n;

0, m ̸= n.

Write h(z) =
∑∞

n=0 anz
n, where ||h||2 =

∑∞
n=0

n!
αn |an|2. Then∫

C

|⟨Uzh, ej⟩|2dA(z) =

∫
C

∣∣∣∣∣
〈 ∞∑

n=0

anUzw
n, ej

〉∣∣∣∣∣
2

dA(z)(2.3)

=

∫
C

∞∑
n=0

|an|2|⟨Uzw
n, ej⟩|2dA(z)

=

∞∑
n=0

|an|2
∫
C

|⟨Uzw
n, ej⟩|2dA(z)

=

∞∑
n=0

|an|2
πn!

αn+1
=

π

α
||h||2.

This completes the proof. □

Through this theorem, we can observe that for all h ∈ F 2
α, we have

α

π

∫
C

|⟨Uzh, ej⟩|2dA(z) = ||h||2.

3. Compactness of Toeplitz-type operators

Let a ∈ L∞(C). Then we can see that the Berezin transform of the Toeplitz-

type operators T
(j)
a is

T̃
(j)
a (w) = ⟨T (j)

a kw, kw⟩(3.1)

=
α

π

∫
C

|⟨Uzej , kw⟩|2a(z)dA(z)

=
αj+1

πj!

∫
C

|(Uzξ
j)(w)|2e−α|w|2a(z)dA(z)

=
αj+1

πj!

∫
C

|φz(w)
j |2|kz(w)|2e−α|w|2a(z)dA(z)

=
αj+1

πj!

∫
C

|φw(z)
j |2e−α|φw(z)|2a(z)dA(z).

In particular, T̃
(j)
a = T̃a = ã when j = 0. If a ∈ L∞(C), then Ta is a com-

pact operator if and only if ã vanishing at infinity, see [3]. We next use the

Berezin transformation of the Toeplitz-type operator T
(j)
a to characterize the

compactness of this operator.
In order to prove the compactness of Toeplitz-type operators, we need some

preparations.
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Lemma 3.1. For w, z ∈ C, let t = eiIm(αzw). Then we have UzUw = Uφz(w)Vt,

where Vtf(u) = tf(−u) for f ∈ F 2
α.

Proof. Since φw ◦ φz ◦ φφz(w) = −I, where I is identity, for any f ∈ F 2
α,

UwUzf(ξ) = f ◦ φz ◦ φw(ξ)kz(φw(ξ))kw(ξ)

= f ◦ φφz(w)(−ξ)eαzφw(ξ)−α
2 |z|2+αwξ−α

2 |w|2

= f ◦ φφz(w)(−ξ)kφz(w)(−ξ)e−iIm(αzw)

= VtUφz(w)f(ξ).

It is easy to show that V ∗
t = Vt, therefore, UzUw = Uφz(w)Vt, where t =

eiIm(αzw). □

Lemma 3.2. For f ∈ L∞(C), we have

(3.2) (T
(j)
f Kz)(u) = Kz(u)(T

(j)
f◦φz

1)(φz(u)).

Proof. For f ∈ L∞(C), we have

Kz(u)(T
(j)
f◦φz

1)(φz(u))

= Kz(u)⟨T (j)
f◦φz

1,Kφz(u)⟩

= Kz(u)

∫
C

⟨Uς1, ej⟩⟨ej , UςKφz(u)⟩f ◦ φz(ς)dA(ς)

= Kz(u)

∫
C

⟨1, Uφz(η)ej⟩⟨Uφz(η)ej ,Kφz(u)⟩f(η)dA(η).

Since Ku(φz(v))kz(v) = Kφz(u)(v)kz(u), we get kz(u)UzKφz(u) = Ku. Tak-

ing λ = eiIm(αzη), using Lemma 3.1, we have UzUη = Uφz(η)Vλ, where Vλej =

λ(−1)jej , then

Kz(u)(T
(j)
f◦φz

1)(φz(u))

=
α

π
Kz(u)

∫
C

⟨Uz1, Uηej⟩⟨Uηej , UzKφz(u)⟩f(η)dA(η)

=
α

π

∫
C

⟨Kz, Uηej⟩⟨Uηej , kz(u)UzKφz(u)⟩f(η)dA(η)

=
α

π

∫
C

⟨Kz, Uηej⟩⟨Uηej ,Ku⟩f(η)dA(η)

= (T
(j)
f Kz)(u). □

Lemma 3.3. Let S be a bounded operator on F 2
α, and let S̃(z) → 0 as z → ∞.

Then Sz1 → 0 weakly in F 2
α as z → ∞.

Proof. The proof is similar to the corresponding result in [2] or [5]. For com-
pleteness, we present an elementary proof in some details here. It suffices to
show that ⟨Sz1, w

s⟩ → 0 as z → ∞ for every nonnegative integer s. So fix a
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nonnegative integer s. For z, η ∈ C, by the definition of the Berezin transform
of operator, we have

S̃ ◦ φz(η) = S̃z(η) = e−α|η|2
∞∑

j,m=0

αj+m

j!m!
ηjηm⟨Szw

j , wm⟩.

Now fix r ∈ (0, 1), multiply both sides of the last equation by ηseα|η|
2

, and
then integrate over Mr, where Mr = {z ∈ C : |z| ≤ r}, to obtain∫

Mr

S̃ ◦ φz(η)η
seα|η|

2

dλα(η)

=

∞∑
j,m=0

αj+m

j!m!
⟨Szw

j , wm⟩
∫
Mr

ηj+sηmdλα(η)

=

∞∑
j=0

α2j+s+1

j!(j + s)!
⟨Szw

j , wj+s⟩
∫ r2

0

xj+se−αxdx

=
αs+1

s!

∫ r2

0

xse−αxdx

⟨Sz1, w
s⟩+

∞∑
j>0

α2js!

j!(j + s)!
⟨Szw

j , wj+s⟩
∫ r2

0
xj+se−αxdx∫ r2

0
xse−αxdx

.

Let now us examine the infinite sum above. It is easy to check that∫ r2

0
xj+se−αxdx∫ r2

0
xse−αxdx

≤ r2j

and ∣∣∣∣∣∣
∞∑
j>0

α2js!

j!(j + s)!
⟨Szw

j , wj+s⟩
∫ r2

0
xj+se−αxdx∫ r2

0
xse−αxdx

∣∣∣∣∣∣ ≤ s!α− s
2 ||S||(eαr

2

− 1).

Thus given ε > 0, we can choose r ∈ (0, 1) such that∣∣∣∣∣∣
∞∑
j>0

α2js!

j!(j + s)!
⟨Szw

j , wj+s⟩
∫ r2

0
xj+se−αxdx∫ r2

0
xse−αxdx

∣∣∣∣∣∣ ≤ ε

for all z ∈ C. Hence we get limz→∞ |⟨Sz1, w
s⟩| ≤ ε. The proof of lemma is

completed. □

We are now ready to prove the main result of this section.

Theorem 3.4. Let a ∈ L∞(Cn). Then Topeplitz-type operator T
(j)
a is compact

if and only if lim|z|→∞ T̃
(j)
a (z) = 0.

Proof. The necessity is obvious. We will prove the sufficiency in several steps.
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Step 1. Let gz = T
(j)
a◦φz1 ∈ F 2

α. We have supz∈C ||gz||F 2
α

≤ ||a||∞. We first
observe that T|gz| = PM|gz|P = (M

|gz|
1
2
P )∗(M

|gz|
1
2
P ), where P is the pro-

jection from L2(C, dλα) onto F 2
α. Using Cauchy-Schwarz inequality, we have

||M
|gz|

1
2
P ||2 = ||T|gz|||. Then

|(T (j)
a◦φz1)(u)| ≤

∫
C

∣∣∣|gz(σ)| 12 |Ku(σ)|
1
2

∣∣∣2 dλα(σ)(3.3)

≤ ||M
|gz|

1
2
||2||K

1
2
u ||2 = e

α|u|2
4 ||M

|gz|
1
2
P ||2

= e
α|u|2

4 ||T|gz||| ≤ ||a||∞e
α|u|2

4 .

Step 2. For lim|z|→∞ T̃
(j)
a (z) = 0, we have T

(j)
a◦φz1 → 0 weakly as |z| → ∞. In

particular, (T
(j)
a◦φz1)(u) = ⟨T (j)

a◦φz1,Ku⟩ → 0 pointwisely as |z| → ∞.

Proof. Let z, w ∈ C and t = eiIm(αzφz(w)). Then, using Lemma 3.1, we have

UzUφz(w) = UwVt,

where Vtej = t(−1)jej . So, for g, h ∈ F 2
α,

⟨UzT
(j)
a Uzg, h⟩ =

α

π

∫
C

⟨UwUzg, ej⟩⟨ej , UwUzh⟩a(w)dA(w)

=
α

π

∫
C

⟨Uφz(η)Uzg, ej⟩⟨ej , Uφz(η)Uzh⟩a(φz(η))dA(η)

=
α

π

∫
C

⟨Uηg, ej⟩⟨ej , Uηh⟩a ◦ φz(η)dA(η)

= ⟨T (j)
a◦φzg, h⟩,

then UzT
(j)
a Uz = T

(j)
a◦φz . Hence, by Lemma 3.3, we get T̃

(j)
a◦φz1 → 0 weakly as

z → ∞, since lim|z|→∞ T̃
(j)
a (z) = 0. □

Step 3. Let a ∈ L∞(C) and lim|z|→∞ T̃
(j)
a (z) = 0. For R > 0, let B(0, R)

denote the open disk of radius R centered at 0. Let T
(j)
a,R denote the operator

from F 2
α into L2(C, dλα) defined by

T
(j)
a,R = MB(0,R)T

(j)
a ,

where MB(0,R) is the multiplication operator with respect to the characteristic

function χB(0,R)(·) on B(0, R). Then T
(j)
a,R is compact and

lim
R→∞

||T (j)
a − T

(j)
a,R|| = 0,

so that T
(j)
a is compact.



966 C. XU AND T. YU

Proof. By a simple normal family argument, MB(0,R) : F 2
α → L2(C, dλα) is

compact, and so each T
(j)
a,R is compact. It is easy to show that (T

(j)
a )∗ = T

(j)
a .

For g ∈ F 2
α, we get that

(T (j)
a − T

(j)
a,R)g(z) =

(
(1− χB(0,R))T

(j)
a g

)
(z)

= (1− χB(0,R)(z))⟨T (j)
a g,Kz⟩

= (1− χB(0,R)(z))⟨g, T
(j)
a Kz⟩

=

∫
C

g(u)(1− χB(0,R)(z))(T
(j)
a Kz)(u)dλα(u),

so T
(j)
a −T

(j)
a,R is the restriction to F 2

α of an integral operator on L2(C, dλα) with

kernel Ka,R(z, u) = (1 − χB(0,R)(z))(T
(j)
a Kz)(u). By Schur’s test, see [16, 17],

whenever there exist a positive measurable function h on C and constants C1,R

and C2 such that∫
C

|Ka,R(z, u)|h(z)dλα(z) ≤ C2h(u), ∀u ∈ C,∫
C

|Ka,R(z, u)|h(u)dλα(u) ≤ C1,Rh(z), ∀z ∈ C.

We get that ||T (j)
a − T

(j)
a,R||2 ≤ C1,RC2.

Let h(z) = e
α|z|2

2 . By (3.2), we have that∫
C

|Ka,R(z, u)|h(z)dλα(z) ≤
∫
C

|T (j)
a Kz)(u)|e

α|z|2
2 dλα(z)

=
α

π

∫
C

|Kz(u)||(T (j)
a◦φz

1)(φz(u))|e
−α|z|2

2 dA(z)

=
α

π

∫
C

|Kz+u(u)||(T (j)
a◦φz+u

1)(z)|e
−α|z+u|2

2 dA(z).

However

|Kz+u(u)|e
−α|z+u|2

2 = e
α|u|2

2 −α|z|2
2 ,

and by (3.3), we have that

|(T (j)
a◦φz+u

1)(z)| ≤ ||a||∞e
α|z|2

4 .

Hence∫
C

|Ka,R(z, u)|h(z)dλα(z) ≤
α

π
||a||∞e

α|u|2
2

∫
C

e−
α|z|2

2 dA(z) ≤ C2e
α|u|2

2 .

For |z| ≥ R, we have∫
C

|Ka,R(z, u)|h(u)dλα(u) =
α

π

∫
C

|Ka,R(z, u)|e−
α|u|2

2 dA(u),
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which by (3.2) is equal to

α

π

∫
C

|Kz(u)||(T (j)
a◦φz

1)(φz(u))|e−
α|u|2

2 dA(u).

By the change of variables u → φz(u), this is equal to

α

π

∫
C

|Kz(φz(u))||(T (j)
a◦φz

1)(u)|e−
α|z−u|2

2 dA(u)

=
α

π

∫
C

|(T (j)
a◦φz

1)(u)||eα(z−u)z|e−
α|z−u|2

2 dA(u).

If 1 < p < ∞ with conjugate exponent q, then by Hölder’s inequality, we get
that

α

π

∫
C

|(T (j)
a◦φz

1)(u)||eα(z−u)z|e−
α|z−u|2

2 dA(u)

=
α

π

∫
C

(
|(T (j)

a◦φz
1)(u)|e−

2α|u|2
5

)(
e

2α|u|2
5 |eα(z−u)z|e−

α|z−u|2
2

)
dA(u)

=
α

π

(∫
C

(
|(T (j)

a◦φz
1)(u)|e−

2α|u|2
5

)p

dA(u)

) 1
p

×
(∫

C

(
e

2α|u|2
5 |eα(z−u)z|e−

α|z−u|2
2

)q

dA(u)

) 1
q

.

Let

C
′

1,R = sup
|z|≥R

(∫
C

(
|(T (j)

a◦φz
1)(u)|e−

2α|u|2
5

)p

dA(u)

) 1
p

.

From (3.3), we have that
(
|(T (j)

a◦φz
1)(u)|e−

2α|u|2
5

)p
≤ ||a||p∞e−

3αp|u|2
20 , and from

Step 2, we have that limR→∞(T
(j)
a◦φz

1)(u) = 0 pointwisely in u. Thus, by the

dominated convergence theorem, C
′

1,R → 0 as R → ∞. Moreover,(
e

2α|u|2
5 |eα(z−u)z|e−

α|z−u|2
2

)q

= e
αq|z|2

2 e
−αq|u|2

10 ,

so that

α

π

(∫
C

(
e

2α|u|2
5 |eα(z−u)z|e−

α|z−u|2
2

)q

dA(u)

) 1
q

=
α

π
e

α|z|2
2

(∫
C

e
−αq|u|2

10 dA(u)

) 1
q

.

Finally, we get that∫
C

|Ka,R(z, u)|h(u)dλα(u) ≤ C1,Rh(z), ∀z ∈ C,

where C1,R → 0 as R → ∞. By Schur’s test, this proves Step 3. □

This completes the proof. □



968 C. XU AND T. YU

In this paper, we only solve the boundedness and compactness of Toeplitz-
type operators induced by bounded symbols. Recall that BMO as the vector
space of locally integrable f on C such that

sup

∫
C

|f ◦ φz − f̃(z)|dλα < ∞.

Coburn and Isralowitz [5] studied that the Toeplitz operator induced by BMO
is bounded (compact) if and only if it’s Berezin transform is bounded (vanish-
ing at infinity). However, the boundedness and compactness of Toeplitz-type
operators induced by BMO are not clear. So, we raise the following conjecture.

Conjecture 3.5. Let f ∈ BMO. Then the Toeplitz-type operator induced by
BMO is bounded (compact) if and only if its Berezin transform is bounded
(vanishing at infinity).

Acknowledgements. The authors are very grateful to the referee for his (or
her) helpful suggestions and comments.

References

[1] L. Abreu and N. J. Faustino, On Toeplitz operators and localization operators, Proc.

Amer. Math. Soc. 143 (2015), no. 10, 4317–4323. https://doi.org/10.1090/proc/

12211

[2] S. Axler and D. Zheng, Compact operators via the Berezin transform, Indiana Univ.

Math. J. 47 (1998), no. 2, 387–400. https://doi.org/10.1512/iumj.1998.47.1407
[3] W. Bauer and J. B. Isralowitz, Compactness characterization of operators in the Toeplitz

algebra of the Fock space F p
α , J. Funct. Anal. 263 (2012), no. 5, 1323–1355. https:

//doi.org/10.1016/j.jfa.2012.04.020

[4] L. A. Coburn, The Bargmann isometry and Gabor-Daubechies wavelet localization op-

erators, in Systems, approximation, singular integral operators, and related topics (Bor-
deaux, 2000), 169–178, Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, 2001.
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