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SPIN HALF-ADDER IN B3

HASAN KELEŞ

Abstract. This study is about spin half add operations in B2 and B3.

The burden of technological structures has increased due to the increase in

the use of today’s technological applications or the processes in the digital
systems used. This has increased the importance of fast transactions and

storage areas. For this, less transactions, more gain and storage space are
foreseen. We have handle tit (triple digit) system instead of bit (binary

digit). 729 is reached in 36 in B3 while 256 is reached with 28 in B2.

The volume and number of transactions are shortened in B3. The limited
storage space at the maximum level is storaged. The logic connectors and

the complement of an element in B2 and the course of the connectors and

the complements of the elements in B3 are examined. ”Carry” calculations
in calculating addition and ”borrow” in calculating difference are given in

B3. The logic structure B2 is seen to embedded in the logic structure B3.

This situation enriches the logic structure. Some theorems and lemmas
and properties in logic structure B2 are extended to logic structure B3.
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1. Introduction

In this part, the theoretical part of the structure is given. Nabiyev showed
such that transactions are narrowed and on the other hand, more numbers are
produced in the ternary system in [12]. Experiences in producing computers us-
ing triple digital logic values ”Setun” and ”Setun 70” at Moscow State University
confirmed this logic in [13].

Definition 1.1. (See [1] - [3]) A group is a set G equipped with a binary
operation ∗ : G × G → G that associates an element a ∗ b ∈ G to every pair
of elements a, b ∈ G, and having the following properties:∗ is associative, has
an identity element e ∈ G , and every element in G is invertible. The elements
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x ∈ G satisfying the following equation are called the kth potent elements of the
set G.

x ∗ ... ∗ x︸ ︷︷ ︸
k− times

= x. (1)

If k = 3, then x ∈ G is called threempotent element of the set G.

The set of all kth potent elements is denoted by k(G,∗) which is,

k(G,∗) = {x ∈ G | x ∗ ... ∗ x︸ ︷︷ ︸
k− times

= x, k ∈ Z+ \ {1}} = P(G).

It is known that | kG |=| P(G) |= k|G| = km.

Theorem 1.2. For any k ∈ Z+ the following statements hold.

(i) (2k + 1)(R,.) = 3(R,.).
(ii) (2k)(R,.) ⊂ 3(R,.).

Proof. A.

(i) For any x ∈ (2k + 1)(R,.)

x2k+1 = x2k︸︷︷︸
x2

x = x2x = x3 = x ⇒ x ∈ 3(R,.)

(2k + 1)(R,.) ⊆ 3(R,.)

(ii) For any x ∈ 3(R,.)

x3 = x2︸︷︷︸
x2k

x = x2kx = x2k+1 = x ⇒ x ∈ 2k + 1)(R,.)

3(R,.) ⊆ (2k + 1)(R,.)

by A.(i), A.(ii).

(2k + 1)(R,.) = 3(R,.).

(iii) Let us give the proof with the induction method. The statement k = 1 says
that

(2)(R,.) ⊂ 3(R,.)

which is true. Fix k − 1 ≥ 1, and suppose that it holds for k − 1, that is,

(2(k − 1))(R,.) ⊂ 3(R,.)

It remains to show for k, that is,

x2k = x2(k−1)︸ ︷︷ ︸
x3

x2

x2(k−1) = x3 = x

by Theorem 1.2.(1). Then,

x2k = x2(k−1)︸ ︷︷ ︸
x

x2 = x3 = x ⇒ x ∈ 3(R,.)
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So,
(2k)(R,.) ⊂ 3(R,.).

□

Real numbers are sufficient for most of equations. The solutions of equations
x2 = x and x3 = x are real numbers. But the roots (or zeros) of the following
equations are the same as in complex numbers:

z2 = z and z3 = z, where z ∈ C.
Thus, the sets of idempotent elements for any z ∈ C are:

2(C,+) = {z ∈ C | z + z = z} = {0}.

2(C,.) = {z ∈ C | z2 = z}.
3(C,.) = {z ∈ C | z3 = z}.

If x = 1 and x = 0, for any complex number z = x+ iy, where x, y ∈ R , then,

2(C,.) = {0, 1} = 2(R,.).

And
3(C,.) = {−1, 0, 1} = 3(R,.).

2. Main results

This chapter is about the logical relationship and purposes of threempotent
elements. The aim is to determine the relationship between the logic created by
the idempotent elements used and the logical formation of the newly obtained
structure. The basic structure in B3 is based on the triple number system, which
is balanced and compact. Suppose that the base value of a number system is 3,
then the digits are -1, 0 and +1 in Ternary Number System(TNS). The set of
these elements is equal to the set of treempotent elements.

The operations to be performed are on real numbers.

x ∈ 3(R,.),∀x ∈ B = {x ∈ R|xk = x, k ≥ 2}. (2)

Definition 2.1. ([4]). A Boolean algebra B is a system B = (B,∧,∨,′ , 0, 1 )
such that ∧ and ∨ are binary operations on B, ′ is a unary operation on B,
0, 1 ∈ B, and the following conditions hold for all x, y, z ∈ B:
(i) x ∧ y = y ∧ x and x ∨ y = y ∨ x;
(ii) x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z;
(iii) (x ∧ y) ∨ y = y and (x ∨ y) ∧ y = y;
(iv) x ∧ (y ∨ z) = x ∧ y ∨ x ∧ z and x ∨ y ∧ z = (x ∨ y) ∧ (x ∨ z);
(v) x ∧ x′ = 0 and x ∨ x′ = 1.

Proposition 2.2. ([5, 6]). Let x, y ∈ B. The followings are equivalent.

(i) x ≤ y.
(ii) x ∨ y = y.
(iii) x ∧ y = x.



190 Hasan Keleş

(iv) x′ = 1− x.

An ordered structure (B,∨,∧,≤) is a Boolean lattice if and only if an ordered
structure satisfies (i), (ii) and (iii) of Proposition 2.2.

In this section, the basic concept of logic is discussed by considering the
idempotent elements which are the basic building blocks of the known lattice
theory. If B is an arbitrary ring then its set of central idempotents, which is the
set

Cen(B) = {e ∈ B|e2 = e, xe = ex = x for all x ∈ B}
becomes a Boolean algebra when its operations are defined by

x ∨ y := x+ y − xy = maks {x, y} , x ∧ y := xy = min {x, y} .
Let B be an arbitrary ring. It is clear that Cen(B) ⊆ kB.
The current lattice is:

B2 = (B,′ ,∧,∨, 0, 1 ) ≡ (B,′ ,∧,∨, 2B ).

If the equation xk = x is taken into account instead of the equation x2 = x, then

Bk ≡ (B,′ ,∧,∨, kB ),where k ≥ 2, k ∈ Z+.

In B2

x ∈ B ⇒ x2 = x ⇒ 2B = {0, 1}.
If the number of elements of the set B is m, then total number of elements in

power set is 2m in B2. This number is 3m in B3.

Example 2.3. Let x ∈ R and B = {x}. The power set of B in B2 is P(B) =
{∅, {x}}. The power set of B in B3 is P(B) = {∅, {x}, {−x}}.

Proposition 2.4. Let B be a finite set in B3 with |B| = m. Then

|P(B)| = 3m.

Proof. Let |B| = m be the finite set in B3. Then,

m∑
i=0

(
m

i

) i∑
k=0

(
i

k

)
=

m∑
i=0

(
m

i

)
1m−i2i = (1 + 2)m = 3m.

□

Let T be true, F be false, and L lie be in a logical expression.

Table 1. The logic values in B2 [7].

x x′ x ∧ x′ x ∨ x′

0 1 0 1
1 0 0 1
F T F T
T F F T
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In B3

x ∈ B ⇒ x3 = x ⇒ 3B = {−1, 0, 1}.
If x = 0 ⇒ x′ = 1 ∨ x′ = −1.

x ∨ x′ =

{
0, if x′ = 1

1, if x′ = −1

x ∧ x′ =

{
0, if x′ = 1

−1, if x′ = −1.

B3 = (B,′ ,∧,∨,−1, 0, 1 ) ≡ (B,′ ,∧,∨, 3B ).

B2 ⊆ B3.

Table 2. The logic values in B3.

x x′
1 x′

2 x ∨ x′
1 x ∧ x′

1 x ∨ x′
2 x ∧ x′

2

0 -1 1 0 -1 1 0
1 0 -1 1 0 1 -1
-1 0 1 0 -1 1 -1
F L T F L T F
T F L T F T L
L F T F L T L

Proposition 2.5. Let B3 be a Boolean Lattice. Then the followings are equiva-
lent for any B.
(i) x′ = x2 − 1.
(ii) One the x′ of x is in B2.
(iii) x′ = 1,x′ = −1.

Proof. Let B3 be a Boolean Lattice and x ∈ B. Then

x3 = x ⇒ x3 − x = 0 ⇒ x(x2 − 1) = 0

If (i) holds, then

x′ = x2 − 1 ⇒ (x+ 1)(x− 1) = 0 ⇒ x′ = 1 ⇒ (ii).

If (ii) and (i) hold, then

x′ = −1, x′ = −1 ⇒ (iii).

If (iii) holds, then

x′ = (x− 1), x′ = (x+ 1) ⇒ x′ = x2 − 1. ⇒ (i).

□
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Lemma 2.6. Let Bk be a Boolean ring. If k ∈ Z+ is odd, then

B2k ⊆ B3.

Proof. The proof is done by the induction method. For k = 1, B2 ⊆ B3. Let us
assume B2k−2 ⊆ B3 is true for k − 1. We have to prove that B2k ⊆ B3.

x ∈ B2k−2 ⇒ x2k−2 = x.

xk = (x2k−2)(x2−k) = x(x2)(xk)−1 = x3(x−1) = x2 = x.

⇒ x ∈ B3 ⇒ B2k ⊆ B3.

□

Lemma 2.7. Let B3 be a Boolean ring. Then

(i) x ∨ x′ = 1, x ∨ x′ = 0.
(ii) x ∧ x′ = −1, x ∧ x′ = 0.

Proof. Let us assume it is x = 0, without loss of the generality. Then, Proof of
(i):

x = 0 ⇒ x ∨ x′ = 1, x ∨ x′ = 0.

And Proof of (ii):
x = 0 ⇒ x ∧ x′ = −1, x ∧ x′ = 0.

□

Let us explain that it is necessary to use B3 in practice. −1 ≡ 2(mod3) in
B3. Although −1 ≡ 1(mod2) in B2, Likewise, 1 ̸= 2. B3 necessitates from this
situation.

3. Spin half-adder in B3

In this section, the operation values and logic values in B2 and B3 are given.
Among these, some procedural studies are discussed. Different approaches of
known or applied logical structures are included here. The in-depth path is fol-
lowed on its applications in computer science. The emphasis is on the acquisition
of the new contribution to logical operations in B3. 2

(C,.), 2(R,.) and 3(R,.), 3(C,.)

are equal to the same set in complex numbers (C, .) and real numbers R. k(C,.)
are different sets of complex numbers for k ⩾ 4.

The Boolean expression of the Half adder, where s total, c Carry, and x and
y are the input values, is given as follows:

s = x
⊕

y, c = x.y

in [8].
Some rules of trinary addition are given below.

(i) 0 = 1− 10, in B3.
(ii) 2 = 1− 1, in B3

(iii) 1 = 1− 11, in B3.
(iv) 0 + 0 = 0, (result= 0, carry = 0)
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(v) 0 + 1 = 1, (result= 1, carry = 0)
(vi) 1 + 1 = −1, (result= -1, carry = 0)
(vii) 1 + 1 + 1 = 10, (result= 0, carry = 1)
(viii) 1 + 1 + 1 + 1 = 11, (result= 1, carry = 1)
(ix) 1 + (−1) = 11, (result= 0, carry = 1)
(x) (−1) + 1 = 11, (result= 0, carry = 1)
(xi) (−1) + (−1) = 11, (result= 0, carry = 1)
(xii) (−1) + (−1) + (−1) = −10, (result= 0, carry = -1)

Table 3. The Sum, Carry, Difference and Borrow logic values
in B2 [9, 10].

Input Half-Adder Half-Subtracter
x y ∧, . Carry(c) ∨,

⊕
Sum(s) (-) Difference) Borrow(x-y) Borrow(y-x)

0 0 0 0 0 0 0
0 1 0 1 1 1 0
1 0 0 1 1 0 1
1 1 1 0 0 0 0

Table 4. The Sum, Carry, Difference and Borrow logic values
in B3 [9, 10].

Input Output
Half-Adder Half-Subtracter

x y ∧, . Carry(c) ∨,
⊕

Sum(s) (-) Difference) Borrow(x-y) Borrow(y-x)
0 0 0 0 0 0 0
0 1 0 1 -1 1 0
0 -1 0 -1 1 1 1
1 0 0 1 1 0 1
1 1 1 -1 0 0 0
1 -1 -1 0 -1 1 1
-1 0 0 -1 -1 1 0
-1 1 -1 0 1 1 1
-1 -1 0 0 0 0 0

Table 5. The operations multiplication and addition in B3.

. -1 0 1
⊕

-1 0 1
-1 0 0 -1 -1 0 -1 0
0 0 0 0 0 -1 0 1
1 -1 0 1 1 0 1 -1

The symmetrical structure is formed as the result of the processes.
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Table 6. The values Sum, Carry and Difference in B2 and B3

[9], [10], [11].

Input B2 B3

x y . Carry(c)
⊕

Sum(s) (-) Difference (x-y) . Carry(c)
⊕

Sum(s) (-) Difference (x-y)
0 0 0 0 0 0 0 0
0 1 0 1 -1 0 1 -1
0 2 0 2 -2 0 2 -2
0 3 0 3 -3 0 3 -3
1 0 0 1 1 0 1 1
1 1 1 2 0 1 2 0
1 2 2 3 -1 2 3 -1
1 3 3 4 -2 3 4 -2
2 0 0 2 2 0 2 2
2 1 2 3 1 2 3 1
2 2 4 4 0 4 4 0
2 3 6 5 -1 6 5 -1
3 0 0 3 3 0 3 3
3 1 3 4 2 3 4 2
3 2 6 5 1 6 5 1
3 3 9 6 0 9 6 0

The same results are obtained for difference values B3 and B2.

The following two lemmas without proof are given.

Lemma 3.1. Suppose x, y are any two elements in B3. Then the following
statements hold.

(i) If x = y = −1 and x = y = 0 then x.y ∈ B2.
(ii) If at least one of the products x.y is 0, then x.y = 0.
(iii) If 1.y = y and x.1 = x, where x, y ∈ B3.
(iv) If x = −1, y = 1, then x.y = −1, y.x = −1.

Corollary 3.2. Let (B3, .). 1 is the identity element according to the multipli-
cation operation in B3.

Lemma 3.3. Suppose x, y are any two elements in B3. Then the following
statements hold.

(i) If x = −1, y = −1 and x = 0, y = 0 then x
⊕

y ∈ B2.
(ii) If x = 0 then x

⊕
y = y, where x, y ∈ B3.

(iii) If 0
⊕

x = x and y
⊕

0 = y, where x, y ∈ B3.
(iv) If x = −1, y = 1, then x

⊕
y = 0, y

⊕
x = 0.

Corollary 3.4. Let (B3,
⊕

).

(i) 0 is the identity according to the addition operation in B3.
(ii) 0 is the absorbing element according to the multiplication operation.

Lemma 3.5. The following assertions hold.

(i) If x = −1 then x−1 ∈ {−1, 1} in (B3,
⊕

).
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(ii) If x = 1 then x−1 ∈ {−1, 1} in (B3,
⊕

).

Proof. The proofs are clear by Tablo 5. □

Theorem 3.6. Let (B3,
⊕

, .) be a binary two operation. Then the following
assertions are true.

(i) For any x, y ∈ B3, x
⊕

y ∈ B3, (closure).
(ii) For any x, y ∈ B3, x.y ∈ B3,(closure).

4. Conclusion

In existing applications, the three-values logic in B are operated. This strength-
ens the common point of mechanical logic and digital logic. The B3 structure
greatly contributes to the new mechanical structure of present day computers.
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