DOI QR코드

DOI QR Code

Investigation of engineering properties of clayey soil experimentally with the inclusion of marble and granite waste

  • Baki Bagriacik (Department of Civil Engineering, Cukurova University, Balcali Campus Saricam) ;
  • Gokhan Altay (Department of Civil Engineering, Cukurova University, Balcali Campus Saricam) ;
  • Cafer Kayadelen (Department of Civil Engineering, Osmaniye Korkut Ata University, Karacaglan Campus)
  • 투고 : 2022.09.20
  • 심사 : 2023.07.11
  • 발행 : 2023.08.25

초록

Granite and marble are widely produced and utilized in the construction industry, resulting in significant waste production. It is essential to manage this waste appropriately and repurpose it in recycling processes to ensure sustainability. The utilization of waste materials such as marble and granite waste (MGW) has become increasingly important in geotechnical engineering to improve the physical and mechanical properties of weak soils. This study investigated the applicability of utilizing MGW and cement (C)-MGW mixtures to improve clayey soil. A series of model plate loading tests were carried out in a specialized circular test tank to assess the influence of MGW and C-MGW mixing ratios on clayey soil samples. The samples were prepared by blending MGW and C-MGW in predetermined proportions. It is found that the bearing capacity of clay soil increased by approximately 71% when using MGW and C additives. Moreover, the consolidated settlement values of the clay soil decreased up to 6 times compared to the additive-free case.

키워드

참고문헌

  1. 1. Abdelkader, H.A., Hussein, M.M. and Ye, H., (2021), "Influence of waste marble dust on the improvement of expansive clay soils", Adv. Civil Eng., 2021, 1-13. https://doi.org/10.1155/2021/3192122. 
  2. Abdullah, H.H., Shahin, M.A. and Walske, M.L. (2019), "Geo-mechanical behavior of clay soils stabilized at ambient temperature with fly-ash geopolymer-incorporated granulated slag", Soils Found., 59, 1906-1920. https://doi.org/10.1016/j.sandf.2019.08.005. 
  3. Altay, G., Kayadelen, C., Canakci, H., Bagriacik, B., Ok, B. and Oguzhanoglu, M.A. (2021a), "Experimental investigation of deformation behavior of geocell retaining walls", Geomech. Eng., 27(5), 419-431. https://doi.org/10.12989/gae.2021.27.5.419. 
  4. Altay, G., Kayadelen, C., Taskiran, T. and Kaya, Y.Z. (2019), "A laboratory study on pull-out resistance of geogrid in clay soil", Measurement, 139, 301-307. https://doi.org/10.1016/j.measurement.2019.02.065. 
  5. Altay, G., Kayadelen, C., Taskiran, T., Bagriacik, B. and Toprak, O. (2021b), "Frictional properties between geocells filled with granular material", Revista de la construccion, 20(2), 332-345. https://doi.org/10.7764/RDLC.20.2.332. 
  6. Andavan, S. and Pagadala, V.K. (2020), "A study on soil stabilization by addition of fly ash and lime", Mater. Today: Proceedings, 22, 1125-1129. https://doi.org/10.1016/j.matpr.2019.11.323. 
  7. ASTM-6913-04 Standard test methods for particle-size distribution (Gradation) of Soils using sieve analysis.
  8. ASTM D2487. Standard Practice for Classification of Soils for Engineering Purposes. 
  9. ASTM D4318.Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. 
  10. ASTM D698. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort. 
  11. ASTM D7263 - 09. Standard Test Methods for Laboratory Determination of Density (Unit Weight) of Soil Specimens. 
  12. Binquet, J. and Lee, K.L. (1975), "Bearing capacity tests on reinforced earth slabs", ASCE J. Geotech. Eng. Division, 101(12), 1241-1255. https://doi.org/10.1061/AJGEB6.0000219. 
  13. Bora, N.C., Kayadelen, C., Altay, G., O nal, Y. and O zturk, M. (2022), "Comparative effectiveness research of palm tree pruning waste and geotextiles on subgrade stabilization", Gradevinar, 74(10), 829-838. https://doi.org/10.14256/JCE.3401.2021. 
  14. Cai, Y., Xu, L., Liu, W., Shang, Y., Su, N. and Feng, D. (2020), "Field test study on the dynamic response of the cement-improved expansive soil subgrade of a heavy-haul railway", Soil Dyn. Earthq. Eng., 128, 105878. https://doi.org/10.1016/j.soildyn.2019.105878. 
  15. Canakci, H., Aziz, A. and Celik, F. (2015a), "Soil stabilization of clay with lignin, rice husk powder and ash", Geomech. Eng., 8(1), 67-79. https://doi.org/10.12989/gae.2015.8.1.067. 
  16. Canakci, H., Gullu, H. and Alhashemy, A. (2019), "Performances of using geopolymers made with various stabilizers for deep mixing", Materials, 12, 2542. https://doi.org/10.3390/ma12162542. 
  17. Canakci, H., Kakia, A.A. and Celik, F. (2016), "Stabilization of clay with waste soda lime glass powder", Procedia Eng., 161, 600-605. https://doi.org/10.1016/j.proeng.2016.08.705. 
  18. Canakci, H., Sidik, W. and Kilic, I.H. (2015b), "Bacterail calcium carbonate precipitation in peat", Arab. J. Sci. Eng., 40, 2251-2260. https://doi.org/10.1007/s13369-015-1760-4. 
  19. Canakci, H., Sidik, W. and Kilic, I.H. (2015c), "Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil", Soils Found., 55(5), 1211-1221. https://doi.org/10.1016/j.sandf.2015.09.020. 
  20. Cinar, M., Karpuzcu, M. and Canakci, H. (2019), "Effect of waste marble powder and fly ash on the rheological characteristics of cement based grout", Civil Eng. J., 5(4), https://doi.org/10.28991/cej-2019-03091287. 
  21. Cinar, M., Karpuzcu, M. and Canakci, H. (2020), "The measurement of fresh properties of cement based grout containing waste marble powder", Measurement, 150, 106833. https://doi.org/10.1016/j.measurement.2019.07.061. 
  22. Cui, M.J., Zheng, J.J., Zhang, R.J., Lai, H.J. and Zhang, J. (2017), "Influence of cementation level on the strength behaviour of bio-cemented sand", Acta Geotechnica, 12, 971-986. https://doi.org/10.1007/s11440-017-0574-9. 
  23. Dash, S.K., Sireesh, S. and Sitharam, T.G. (2003), "Model studies on circular footing supported on geocell reinforced sand underlain by soft clay", Geotext. Geomembranes, 21(4), 197-219. https://doi.org/10.1016/S0266-1144(03)00017-7. 
  24. Eltwati, A.S. and Saleh, F. (2020), Improvement of subgrade soils by using marble dust-(Libya, case study). The International Journal of Engineering and Information Technology (IJEIT), 6(2), 40-4.  https://doi.org/10.36602/ijeit.v6i2.242
  25. Eltwati, A.S., Tarhuni, F. and Elkaseh, A, (2020), "Engineering properties of clayey soil stabilized with waste granite dust", J. Critical Rev., 7(16), 794-802. 
  26. Ignat, R., Baker, S., Holmen, M. and Larsson, S. (2019), "Triaxial extension and tension tests on lime cement-improved clay", Soils Found., 59, 1399-1416. https://doi.org/10.1016/j.sandf.2019.06.004. 
  27. Ikeagwuani, C.C., Obeta, I.N. and Agunwamba, J.C. (2019), "Stabilization of black cotton soil subgrade using sawdust ash and lime", Soils Found., 59, 162-175. https://doi.org/10.1016/j.sandf.2018.10.004. 
  28. Jassim, N.W., Hassan, H. A., Mohammed, H. A. and Fattah, M. Y., (2022), "Utilization of waste marble powder as sustainable stabilization materials for subgrade layer", Results in Eng., 14, 100436. https://doi.org/10.1016/j.rineng.2022.100436. 
  29. Jha, A.K. and Sivapullaiah, P.V. (2018), "Potential of fly ash to suppress the susceptible behavior of lime-treated gypseous soil", Soils Found., 58, 654-665. https://doi.org/10.1016/j.sandf.2018.02.024. 
  30. Kahyaoglu, M.R. and Sahin, M. (2021), "Model studies on polymer strip reinforced soil retaining walls", Geomech. Eng., 25(5), 357-371. https://doi.org/10.12989/gae.2021.25.5.357. 
  31. Kaplan, E., Kayadelen, C., O zturk, M., O nal, Y. and Altay, G. (2022), "Experimental evaluation of the usability of palm tree pruning waste (PTPW) as an alternative to geotextile", Revista de la Construccion, 21(1), 69-82. https://doi.org/10.7764/RDLC.21.1.69. 
  32. Kayadelen, C., Altay, G., O nal, Y. and O zturk, M. (2023), "Particle shape effect on interfacial properties between granular materials and geotextile", Geosynthetics Int., 1-13. https://doi.org/10.1680/jgein.22.00346. 
  33. Kayadelen, C., Onal, T.O. and Altay, G. (2018), "Experimental study on pull-out response of geogrid embedded in sand", Measurement, 117, 390-396. https://doi.org/10.1016/j.measurement.2017.12.024. 
  34. Naseri, F., Irani, M. and Dehkhodarajabi, M. (2016), "Effect of graphene oxide nanosheets on the geotechnical properties of cemented silty soil", Arch. Civil Mech. Eng., 16, 695-701. https://doi.org/10.1016/j.acme.2016.04.008. 
  35. Onal, Y., Calisici, M., Kayadelen, C. and Altay, G. (2023), "A comparative experimental study of geocell and geogrid-reinforced highway base layers under repeated loads", Road Mater. Pavement Design, 1-16. https://doi.org/10.1080/14680629.2023.2182126. 
  36. Onal, Y., Ozturk, M., Altay, G. and Kayadelen, C. (2022), "Comparison of the effect of geotextile and palm tree pruning waste on CBR value of sand soil", Osmaniye Korkut Ata University Journal of the Institute of Science and Technology, 5(2), 570-579. https://doi.org/10.47495/okufbed.998633. 
  37. Pantazopoulos, I.A. and Atmatzidis, D.K. (2012), "Dynamic properties of microfine cement grouted sands", Soil Dyn. Earthq. Eng., 42 17-31. https://doi.org/10.1016/j.soildyn.2012.05.017. 
  38. Raftari, M., Safuan, A., Rashid, A., Kassim, K.A. and Moayedi, H. (2014), "Evaluation of kaolin slurry properties treated with cement", Measurement, 50, 222-228. https://doi.org/10.1016/j.measurement.2013.12.042. 
  39. Riveros, G.A. and Sadrekarimi, A. (2020), "Liquefaction resistance of Fraser River sand improved by a microbially-induced cementation", Soil Dyn. Earthq. Eng., 131, 106034. https://doi.org/10.1016/j.soildyn.2020.106034. 
  40. Sahu, V., Srivastava, A., Misra, A.K. and Sharma, A.K. (2017), "Stabilization of fly ash and lime sludge composites: Assessment of its performance as base course material", Arch. Civil Mech. Eng., 17, 475-485. https://doi.org/10.1016/j.acme.2016.12.010. 
  41. Saygili, A. (2015), "Use of waste marble dust for stabilization of clayey soil", Mater. Sci., 21(4). https://doi.org/10.5755/j01.ms.21.4.11966. 
  42. Sharman, A.K. and Sivapullaiah, P.V. (2016), "Ground granulated blast furnaces lagamended fly ash as an expansive soil stabilizer", Soils Found., 56(2), 205-212. https://doi.org/10.1016/j.sandf.2016.02.004. 
  43. Sidik, W.S., Canakci, H., Kilic, I.H. and Celik, F. (2014), "Applicability of biocementation for organic soil and its effect on permeability", Geomech. Eng., 7(6), 649-663. https://doi.org/10.12989/gae.2014.7.6.649. 
  44. Xiao, Z.Y. and Xu, W. (2019), "Assessment of strength development in cemented coastal silt admixed granite powder", Constr. Build. Mater., 206, 470-482. https://doi.org/10.1016/j.conbuildmat.2019.01.231. 
  45. Zainuddin, N., Yunus, N.Z.M., Al-Bared, M.A.M., Marto, A., Harahap, I.S.H. and Rashid, A.S.A. (2019), "Measuring the engineering properties of marine clay treated with disposed granite waste", Measurement, 131, 50-60. https://doi.org/10.1016/j.measurement.2018.08.053. 
  46. Zhang, C. and Jiang, G. (2020), "Full-scale model testing of the dynamic response of lime stabilized weathered red mudstone subgrade under railway excitation", Soil Dyn. Earthq. Eng., 130, 105999. https://doi.org/10.1016/j.soildyn.2019.105999.