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SEMISIMPLE INJECTIVE COMODULE

AMR AMIN∗ AND NASR ZEYADA

Abstract. In this paper, we define the concept of a semisimple injective

comodule. We show that it is a generalization of some known comodules,

and we give a useful characterization of this notion. Finally, we obtain a
new characterization of simple semiartinian coring using semisimple injec-

tive comodules.
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1. Introduction

This paper’s objectives are to introduce and investigate the notion of semisim-
ple injective comodule.

All the modules in this study are unitary S-modules, and S is a commutative
associative ring with identity. For a right S-module M , we designate the socle
of M by soc(M). I. Amin, M. Yousif, and N. Zeyada [1] created soc-injective
and strongly soc-injective modules; is soc-N -injective for any two modules M
and N if each S-homomorphism f : soc(N) −→ M extends to N . If the right
S-module SS is soc-injective, a ring S is said to be right (self-) soc-injective. If
M is soc-N -injective for every module N , then M is strongly soc-injective.

A coalgebra over a ring S is an S-module T with linear maps

∆ : T → T ⊗S T, ε : T → S,

called coproduct and em counit, respectively, with the commutative diagrams

T
∆ //

∆

��

T → T ⊗S T

∆

��
T → T ⊗S T

∆ // T → T ⊗S T → T ⊗S T,
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T
∆ //

∆

��

T → T ⊗S T

��
T → T ⊗S T // T.

An S-module M is a right T-comodule if there exists an S-linear map inducing
commutative diagrams

M
ρM

//

ρM

��

M ⊗S C

I∆

��
M ⊗S C

ρMI// M ⊗S C ⊗S C,

M
ρM

//

=
$$

M ⊗S C

I

��
M

.

M
ρM

//

ρM

��

M → T ⊗S T

I ∆

��
M → T ⊗S T

ρMI // M → T ⊗S T → T ⊗S T

M
ρM

//

=
&&

M → T ⊗S T

I

��
M

.

Given right T-comodules M and N, a T-comodule morphism is an S-linear
map f : M → N with a commutative diagram

M
f //

ρM

��

N

ρM

��
M → T ⊗S T

fI // N → T ⊗S T

.
The category of right T -comodules, which we designate by MT , is made up

of right T -comodules and comodule homomorphisms.
In the additive category of MT , coproducts and cokernels are present. How-

ever, kernels are not always guaranteed to exist. Monomorphisms don’t have
to be injective maps, though. If every T -monomorphism U → N is a contrac-
tion, a right T -comodule N is referred to as semisimple in the MT , and if all of
these monomorphisms are isomorphisms, N is referred to as simple. Give D its
own category. A morphism f : A −→ B in D is referred to as a coretraction if
g ∈ Mor(B,A) exists and fg = idA.

Direct sums and cokernels are features of the category MT , while T is a sub-
generator. If T is a flat S-module, MT is a Grothendieck category. The forgetful
functor (â′)R : MT → MS is directly adjacent to the functor â′ ⊗S T : MS →
MT . Any monomorphism f : K → L of S-modules is a monomorphism in MT

as is f ⊗ IT : K ⊗S T → L ⊗S T . The product of the Mλ ⊗S T in MT is
(ΠΛMλ)⊗S T for any family of S-modules {Mλ}Λ. Since MT is a Grothendieck
category if ST is flat, we can define exact sequences in MT and describe them.
In MT, hom-tensor relationships. If X is any S-module, then the following
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S-linear map exists for any M ∈ MT ,

φ : HomT (M,X ⊗S T ) → HomS(M,X), f 7−→ (IX ⊗ ε) ◦ f,
is bijective, with inverse map h 7−→ (h ⊗ IT ) ◦ ρM . Also for any M,N ∈ MT ,
the S-linear map

ψ : HomT (X ⊗R M,N) → HomS(X,Hom
T (M,N)), g 7−→ [x 7−→ g(x⊗ â′)],

is bijective, with inverse map h 7−→ [x⊗m 7−→ h(x)(m)].
Coproducts in MT . Let {Mλ, ϱ

M
λ }Λ be a family ofT-comodules. Put M =⊕

ΛMλ, the coproduct in MS , iλ : Mλ −→ M the canonical inclusions, and
consider the linear maps Mλ

ϱMλ :Mλ −→Mλ ⊗S T ⊆M ⊗S T
Note that Mλ ⊗S T ⊆ M ⊗S T is a pure submodule because the inclusions

iλ are S-splitting. The properties of coproducts of S-modules lead to a special
coaction, ϱM :M −→M ⊗S T,, which is coassociative and counital since all the
M are, and which transformsM into a T -comodule for which the iλ :Mλ −→M
are T -morphisms with the following universal property:
Let {fλ :Mλ −→ N}Λ be a family of morphisms inMT . For each of the distinct
T -morphisms f : M −→ N that exist, the following diagram of C-morphisms
commutes:

Mλ
iλ //

fλ !!

M

f

��
N

The direct limit of direct families of T -comodules is generated from the direct
limit in MR, just like the direct limit of the coproduct. Both constructions are
particular examples of a general remark made in 38.25 regarding the colimits of
F -coalgebras.

For all of the undefined terms used in this study, we mention [2], [3], and [8].

2. Main results

For any right S-module L define the map

αL,K : N ⊗K −→ HomZ(K
∗, L), n⊗ k 7−→ [f 7−→ nf(k)]

K satisfies the α-condition provided αT,K is injective for all right S-modules N .
M satisfies the α-condition if and only if M is locally projective in MS . If a
coring T satisfies the left α- condition, then MT is an abelian category. In the
following we may consider T satisfies the left α- condition.

Definition 2.1. (1) A morphism f : A → B in MT is called a monomor-
phism if for g, h ∈MorT (D,A), fg = fh implies g = h.

(2) A morphism f : A → B in MT is called a coretraction if there exists
g ∈MorT (B,A) with gf = IA.
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(3) An T -comodule M is called semisimple if any monomorphism f : N →
M is a coretraction.

Proposition 2.2. [3, 4.13(2)] Let C be a left S-module. Then for L ∈ MT the
following are equivalent:

(1) L is semisimple;
(2) every subcomodule of L is a direct summand;
(3) L is a sum of simple subcomodules;
(4) L is a direct sum of simple subcomodules.

Lemma 2.3. Let L be a T -comodule. If L is simple R-module, then L is simple
T -comodule.

Proof. Suppose that L has a subcomoduleK, soK is a submodule of L andK=0
or K = L. Therefore L has no subcomodules and L is simple comodule. □

Let Mi be a T -comodule for all i ∈ I. If Mi is simple S-module for every
i ∈ I, then M =

⊕
i∈I Mi is semisimple S-module. By above Lemma M is

semisimple T -comodule.

Lemma 2.4. If FS is a free module and SN is a semsimple module then FSN
is semsimple F -comodule.

Proof. For a ring S with unit we have RN = N and µS : RSN 7→ N is an S-
isomorphism. Since the tensor product commutes with direct sums (see 12.4), we

obtain, for every free right S-module FR
∼= R

(∧)
R , ∧ an index set, a Z-isomorphism

FSN ∼= N (∧).
□

Definition 2.5. An object M ∈ MT is relative semisimple injective in MT if,
for any T -comodule morphism i : N → L (with N is a semisimple in MT ) that
is an S-module coretraction, and for every morphism f : N → M in MT , there
exists a right T -comodule morphism g : L→M such that g ◦ i = f .

Proposition 2.6. Let Q be a semisimple right T -comodule. Then the following
are equivalent,

(1) Q is relative semisimple injective;
(2) every T -comodule map i : Q → L that is a coretraction in MS is a

coretraction in MT .
(3) the coaction ϱ : Q→ Q⊗S T is a coretraction in MT

Proof. (1)⇒(2) If Q is relative semisimple injective, take N = Q and f = IQ to
obtain the assertion.
(2)⇒ (3) Since ϱQ : Q→ Q⊗ST is a right T -comodule map that is a coretraction
in MS , so its a coretraction MT .
(3)→(1) See [3, 3.18]. □
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Definition 2.7. An object Q ∈ MT is semisimple injective in MT if, for any
monomorphismM → N inMT whereM is a semisimple comodule, the canonical
map HomT (N,Q) → HomT (M,Q) is surjective.

Example 2.8. Any injective comodule is a semisimple injective comodule.

Proposition 2.9. Let N be a T -comodule and {Li : i ∈ I} a family of T -comodules.
Then the product Πi∈ILi is semisimple N -injective if and only if Li is semisimple
N -injective ∀i ∈ I.

Proof. Routine.
□

Proposition 2.10. Let L be a comodule.

(1) Let {Li : i ∈ I} a family of comodules in MT . Then the direct product∏
i∈I Li is semisimple injective if and only if Li is semisimple injective

for all i ∈ I.
(2) Let T and N be two comodules in MT with T ∼= N . If T is semisimple

injective, then N is semisimple injective.
(3) Let T and N be two comodules in MT with N is a direct summand of

T . If T is semisimple injective, then N is semisimple injective.

Theorem 2.11. For a left S-module T , the following statements are true:

(1) If every semisimple T -comodule is a semisimple module and X ∈ MS

is strongly soc-injective in MS, then X ⊗S T is semisimple injective in
MT .

(2) If SF is free left S-module and N is semisimple injective in MT , then
HomT (F,N) is soc-injective in MS.

Proof. (1) From hom-tensor relations inMT we have φ1, and φ2 isomorphisms .
There exist α surjective homomorphism from X is strongly soc-injective in MS

and we can define f as a surjective homomorphism by using φ1, φ2, and α.

HomT (N,X ⊗S T )
surjective

f //

∼=φ1

��

HomT (M,X ⊗S T )

∼= φ2

��
HomS(N,X)

surjective

α // HomS(M,X)

(2) From hom-tensor relations in MT we have φ1, and φ2 isomorphisms .
There exist α surjective homomorphism from N is semisimple injective in MT

and we can defined f is surjective homomorphism by using φ1, φ2, and α.

HomS(L, hom
T (L,N))

surjective

f // HomS(K,hom
T (L,N))

HomT (L⊗S L,N)

∼= φ1

OO

surjective

α // HomT (K ⊗S L,N)

∼=φ2

OO
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□

Note that T satisfies the left α- condition, so the categoryMT is a Grothendieck
category and every comodule in MC has an injective hull.

Proposition 2.12. Let N be a comodule in MT . The following are equivalent:

(1) N is semisimple injective comodule.
(2) N is semisimple E(N)- injective comodule.
(3) N = E ⊕ T , where E is an injective comodule and T has no semisimple

subcomodules.

Proof. (1) ⇒ (2): Clear.
(2) ⇒ (3): If N has no semisimple subcomodule, we are done. Assume

that N has a nonzero semisimple subcomodule and K is the sum of all simple
subcomodule of E(N). Consider the following diagram:

0

��
0 // K

inc. //

��

E(N)

σ
||

N

where K is the sum of all simple subcomodule in E(N) and i is the inclusion
map. Since N is semisimple injective. So, there exists an T -morphism σ :
E(K) → N ; which extends i. Since E(K) is the injective envelope of K, σ is an
embedding of E(K) in N . If we write E = σ(E(K)), then N = E ⊕ T for some
submodule T of M . Clearly, E is injective and T has no nonzero semisimple
subcomodule.

(3) ⇒ (1): This is clear since comodules have no semisimple subcomodule are
semisimple injective and finite direct sums of semisimple injective comodules are
semisimple injective. □

Definition 2.13. A coring is said to be simple if it does not contain non-trivial
sub-bicomodules.

Definition 2.14. The coring T is said to be left semiartinian if it is semiartinian
as an object in TM , namely, every factor comodule of T contains a (nonzero)
simple sub Comodule.

Theorem 2.15. Let T be an S-coring where ST and TR are projective modules.
The statements that follow are equivalent:

(1) T is a simple left semi-artinian coring;
(2) T is a simple coring and has a simple left subcomodule;
(3) T is simple and each semisimple injective comodule in T is injective.
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Proof. (1) ⇒ (2). Clear.
(2) ⇒ (3). Let Q be an injective comodule that is semisimple. Q is then equal

to E
⊕
T according to Proposition 2.12, where E is an injective comodule and

T lacks a simple subcomodule. Therefore, assuming Q is an injective comodule
and T = 0.

(3) ⇒ (1). Assume that M has no simple subcomdules and N is a submodule
of M , so N

⊕
M is injective comodule. Then N is injective comodule and its a

summand of M . Thus M is a semisimple which is a contradiction.
□
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