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IDENTICAL THEOREM OF APPROXIMATION UNBOUNDED

FUNCTIONS BY LINEAR OPERATORS†

ALAA ADNAN AUAD, FAISAL AL-SHARQI∗

Abstract. The aim of this paper, investigated of weighted space which
contained the unbounded functions which is to be approximated by linear

operators in terms some Well-known approximation tools such as the mod-

ulus of smoothness and K-functional. The characteristics of the identical
theorem between modulus of smoothness and K-functional are consider.

In addition to the establish the direct, converse and identical theorem by

using some linear operators in terms modulus Ditzian-Totik.
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1. Introduction

In algebraic structure, the approximation theory is a vital tool in estimates for
the differences between two linear operators, and this theory has received broad
interest among researchers for the purpose of new contribution [1, 2, 3, 4, 5].
Latest, since the weighted spaces are more interesting than the space of mea-
surable functions, which are denoted by Lp− spaces, there is grow demand in
problem of approximation in weighted spaces. For arranged efficiently we pre-
sented from [6] some basic concepts and definitions which related main results.
There are many researchers have used linear operators, in particular Baskakov
operator see [6, 10, 11, 12, 13, 15, 16, 17] to obtain approximate results in several
spaces . In (1995) Guta [9] prove direct theorem by modified Baskakov type op-
erators in terms Ditizain – Totik modulus of smoothness, in (1998) Agrawal [7]
introduced a sequences of linear operators to approximate unbounded functions
in Cα[0,∞), in (2006) Finta [8] discuss direct approximation for discrete type
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operators in terms a modified K-functional as applications he proved direct the-
orems for Szász - Mirakjan type operators , Lupa operators and Baskakov type
operators, in (2013) Naragan [16] interduced definitions and properties of q-
Baskakov- Beta- Stancu operators and he gave some approximation properties
and asymptotic formulae for these operators, in (2017) Rao [17] verify of gen-
eralized Baskakov operators and study the degree of approximation by modulus
of continuity, order of approximation for the derivative of functions and proved
direct theorem in terms K-functional and Ditzian-Totik modulus of smoothness.
Recently, Alaa Auad and Abdulsattar [20] established the concept the exis-
tence and uniqueness for best approximation in linear k-normed spaces, proved
the mapping form k-normed space into finite dimensional subspace of k-normed
space is continuous , bounded compact subset of linear k-normed is proximal and
characterization of best uniform approximation in same space. In this paper, we
will approximate the unbounded functions in weighted space by using some lin-
ear operators , the most important one is Baskakov operator. Introduction is
here

2. Preliminaries and Notes

Let X = [0,∞), 1 ≤ p < ∞, the space Lp(X) of all measurable functions on
X with any function P in this space with equipped the norm

∥ρ∥p = (

∫
x

|ρ(x)|pdx)
1
p < ∞,

is the set of all weighted functions as µ : X → R+ is an almost everywhere
positive function which is locally integrable.
Consider L(p,µ)(X) the weighted space of all unbounded functions, where µ is
weighted function,1 ≤ p < ∞ and every function ρ belong to the spaceL(p,µ)(X)
has the following

∥ρ∥pp,µ =

∫
x

|ρ(x).µ(x)|pdx < ∞ (1)

The modulus of smoothness of order
k ∈ N of the function ρ ∈ L(p,µ)(X) is defined by

Ωk(ρ, hp,µ) = sup︸︷︷︸
|δ≤h|

{∥∆k
δρ(.)∥p,µ , h > 0} (2)

where ∆k
δρ(t) is called the kth difference with step δ at the point t and defined

by

∆k
δρ(t) =

k∑
j=0

(−1)k−j

(
k

j

)
ρ(t+ jδ).
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And the kth Ditzian- Totik modulus of smoothness of ρ in L(p,µ)(X) is defined
by

Ωϑ
k(ρ, h)p,µ = sup︸︷︷︸

|δ≤h|

{∥∆k
δϑρ(.)∥p,µ , h > 0} (3)

Where

∆k
δϑρ(t) =

k∑
j=0

(−1)k−j

(
k

j

)
ρ(t+ jδϑ(t)).

Let δk be a subspace of L(p,µ)(X) and ρ belong to the L(p,µ)(X) with ρ ∈ δk.
Then the K-functional of the function ρ is defined by

Kk(ρ, δ)p,µ = inf{∥ρ− ϱ∥p,µ + δk∥Dk(ϱ)∥p,µ} (4)

If Pk the subspace of L(p,µ)(X) with algebraic polynomial of degree k, then
best approximation of ρ ∈ L(p,µ)(X) is defined by

εp,µ = inf{∥ρ− pk∥p,µ , ϱk ∈ Pk} (5)

For the function ρ in the space L(p,µ)(X), the class of Baskakov linear oper-
ators are defined see [9] as

Gr(ρ, t) =

∞∑
r=0

ρ(
r

n
)gn,r(t). (6)

Where

gn,r(t) =

(
n+ r − 1

r

)
tr

(1 + t)n+r
n, r ∈ N.

Now, we using defined the Kantorovich linear operator [ see [14] ] as following

B(ρ, t) = (n− 1)

∞∑
r=0

Gn,r(t)

∫ (r+1)/(n−1)

r/(n−1)

ρ(x)dx, (7)

to approximate the functions in weighted space L(p,µ)(X). For n, k ∈ N,
such that n ≥ 2k, the linear combinations of the Baskakov-Kantorovich linear
operator given by

Pm(ρ, t) =

2k−1∑
j=0

Cj(m, k)Bmj(ρ, t). (8)

where the coefficients Cj(m, k) dependent of m, k and satisfy the following
conditions:

m ≤ m0 ≤ m1 ≤ ... ≤ m2k−1 ≤ Cm,

2k−1∑
j=0

Cj(m, k) = 1. (9)

2k−1∑
j=0

Cj(m, k)Bmj((x− t)m; t) = 0 ,m = 1, 2, ..., 2k − 1 (10)
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3. Auxiliary lemmas

In this section we will present some lemmas that we need in the proofs of the
main results:

Lemma 3.1. The operator B(ρ, t) which defined in equation( 7) satisfying
B(1, t) = 1.

B((u− t)2k, t) ≤ Ch2k
n (t)

(n)k
, where h2k

n (t) = max{θ2n(t), 1
nk },

θ(t) =
√

t(t+ 1), n, k ∈ N and C positive constant

The proof of this it’s clear.

Lemma 3.2. [14] If µ(t) = tα(t+1)βandα, β ∈ R, then µ(t)
µ(z) ≤ 2|β|[( t

z )
α + ( t

z )
β ].

Lemma 3.3. Let ρ ∈ Lp,µ(X), µ(t) = tα(t + 1)β , α, β are natural numbers and
0 ≤ α, β < n− 1. Then

∥B(ρ, .)∥p,µ ≤ C∥ρ∥p,µ
Proof : From equation (7),lemma 3.1 and lemma 3.2 we have:

|B(ρ, t)µ(t)| = |
∞∑
r=0

Gn,r(t)µ(t)(n− 1)

∫ (r+1)/(n−1)

r/(n−1)

ρ(x)dx|,

≤
∞∑
r=0

Gn,r(t)(n−1)2|β|+1[(
t(n− 1)

r + 1
)α+(

t(n− 1)

r + 1
)β ]

∫ (r+1)/(n−1)

r/(n−1)

|µ(t)ρ(x)|dx,

we set

Γ1 =

∞∑
r=0

Gn,r(t)(n− 1)2|β|+1(
t(n− 1)

r + 1
)α +

∫ (r+1)/(n−1)

r/(n−1)

|µ(t)ρ(x)|dx,

Γ2 =

∞∑
r=0

Gn,r(t)(n− 1)2|β|+1(
t(n− 1)

r + 1
)β +

∫ (r+1)/(n−1)

r/(n−1)

|µ(t)ρ(x)|dx.

Since,

∥Γ1∥ρ,µ = {
∫
x

|
∞∑
r=0

Gn,r(t)(n−1)2|β|+1(
t(n− 1)

r + 1
)α+

∫ (r+1)/(n−1)

r/(n−1)

|µ(t)ρ(x)dx|pdt}
1
p ,

≤ C{
∫
x

C

∞∑
r=0

Gn,r(t)(n−1)2|β|+1(
t(n− 1)

r + 1
)α+

∫ (r+1)/(n−1)

r/(n−1)

C|µ(t)ρ(x)dx|pdt}
1
p ,

= C{
∫
x

C

∞∑
r=α

Gn,r(t)(n−1)2|β|+1(
t(n− 1)

r + 1
)α+

∫ (r−α+1)/(n−1)

(r−α)/(n−1)

C|µ(t)ρ(x)dx|pdt}
1
p ,

= C{
∫
x

C

∞∑
r=α

Gn,r(t)(n−1)2|β|+1(
t(n− 1)

r + 1
)α+

∫ (r−α+1)/(n−1)

(r−α)/(n−1)

C|µ(t)ρ(x)dx|p+
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C

∞∑
r=α

Gn,r(t)(n− 1)2|β|+1(
t(n− 1)

r + 1
)α +

∫ max(0, r−α+1
n−1 )

max(0, r−α
n−1 )

C|µ(t)ρ(x)dx|pdt}
1
p ,

≤ C{
∫
x

C

∞∑
r=α

Gn,r(t)C(n−1)2|β|+1(
t(n− 1)

r + 1
)α+

∫ max(0, r−α+1
n−1

)

max(0, r−α
n−1

)

C|µ(t)ρ(x)dx|pdt}
1
p ,

≤ max(C){
∫
x

C|µ(t)ρ(x)p|dx}
1
p = C∥ρ∥p,µ

Thus,

∥Γ1∥p,µ ≤ C∥ρ∥p,µ (11)

Similarly, we can to prove

∥Γ2∥p,µ ≤ C∥ρ∥p,µ (12)

From equation (11) and equation (12), we obtain the proof of lemma.

Lemma 3.4. [18] Let ρ ∈ LP ([0,∞)), n ≥ kandn, k ∈ N. Then

(1) ∥P (2k)
n,k (ρ, .)∥p ≤ Cnk∥ρ∥p.

(2) ∥P (2k)
n,k (ρ, .)∥p ≤ Cnk∥ρ2k∥p.

Lemma 3.5. [19] Let ρ ∈ LP ([0,∞)), δ > 0, k ∈ N
and there exists positive constant C1, C2 Then

C1Ω
ϑ
k(ρ, δ)p ≤ Kk(ρ, δ

k)p ≤ C2Ω
ϑ
k(ρ, δ)p

4. Main results

Our results in this section three theorems, direct, inverse and equivalent the-
orem which we will prove in terms Ditzian- Totik modulus of smoothness.

Theorem 4.1. Let ρ ∈ Lp,µ(X), 1 ≤ p ≤ ∞, α, β, r, n are natural numbers such

that 0 ≤ α, β < n− 1 and ϑ(t) =
√

t(t+ 1) . Then

εk(ρ)ρ,µ ≤ ∥ρ− Pn,k(ρ)∥ ≤ CΩϑ
k(ρ, h)p,µ.

Proof. We define the spaceQ = {ℓ : ℓ2k−1 ∈ C[0, 1), µ(2k), ℓ(2k) ∈ L(p,µ)(X)} and

ℓ(a) =

2k−1∑
j=0

1

j
(a− t)jℓj(t) + F2k(ℓ, a, t)

where

F2k(ℓ, a, t) =
1

(2k − 1)!

∫ α

t

(a− x)2k−1ℓ2k(u)du, t ∈ [0, 1]

From equation 10, we obtain

Bn,k(ℓ, t)− ℓ(t) = Bn,k(f2k(h, a, t); t).

We need to approximate the operator Bn,k(f2k(ℓ, a, t); t) in the space Lρ,µ(X).
Since,
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∥Bn,k(f2k(ℓ, a, t); t).∥p,µ = ∥
∞∑
r=0

Gn,r(t)(t)(n− 1)

∫ (r+1)/(n−1)

r/(n−1)

1

(2k − 1)!

∫ α

t

(a− x)(2k)ℓ(x)dx)dt∥p,µ

≤
∞∑
r=0

Gn,r(t)(t)(n− 1)

∫ (r+1)/(n−1)

r/(n−1)

1

(2k − 1)!
.
(x− t)

ϑ2k−2(t)
.(

1

t(t+ 1)
+

(
1

t(x+ 1)
)(

1

µ(x)
+

1

µ(t)
)dx∥h2kℓ2k(.)∥p,µ

∼= (I1 + I2 + I3 + I4)∥γ(h2kℓ(2k))(.)∥p,µ
From lemma 3.1, we have

I1 =

∞∑
r=0

Gn,r(t)(n− 1)

∫ (r)/(n−1)

r/(n−1)

1

(2k − 1)!
.
(x− t)2k

ϑ2k(t)
.
µ(t)

µ(x)
dx

≤ 1

(2k − 1)!
ϑ2k(t)

(

∞∑
r=0

Gn,r(t)(n− 1)

∫ (r+1)/(n−1)

r/(n−1)

µ(t)

µ(x)
dx)

1
2 .

(

∞∑
r=0

Gn,r(t)(n− 1)

∫ (r+1)/(n−1)

r/(n−1)

(x− t)2kdx)
1
2

≤ Ch2k(t)

ϑ2k(2k − 1)!
=

C

nk
.

Similarly, we can evaluate I2 and I3 for each of them less than or equal C
nk .

Lastly, we approximate I4 also by using lemma 3.1.

I4 =
µ(t)

ϑ2k−1(t)(2k − 1)!

∞∑
r=0

Gn,r(t)(n− 1)

∫ (r+1)/(n−1)

r/(n−1)

(x− t)2k

ϑ(t)
t(1 + x)dx

≤ 1

ϑ2k−2(t)
(

∞∑
r=0

Gn,r(t)(n− 1)

∫ (r+1)/(n−1)

r/(n−1)

(x− t)4kdx)
1

2
.

(

∞∑
r=0

Gn,r(t)(n− 1)

∫ (r+1)/(n−1)

r/(n−1)

1

(1 + x)2
dx)

1

2

≤ 1

ϑ2k−2(t)
.
Ch2k2

1
2

1 + t
=

C

nk
.

From lemma 3.3, we obtain:

∥Bn,k(F2k(ℓ, a, t); t)∥p,µ ≤ C

nk
∥h2kℓ2k(.)∥p,µ.
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We set h2k = 1
nk for 0 ≤ t < ∞.

∥Bn,k(F2k(ℓ, a, t); t)∥p,µ ≤
∞∑
r=0

Gn,r(t)(t)(n− 1)

∫ (r+1)/(n−1)

r/(n−1)

(x− t)2k(
µ(t)

µ(x)
+ 1)dx|ϑ(µ(t)h2kυ(2k)(t)|

From lemma 3.1, we obtain:

µ(t)nk

2k − 1!

∞∑
r=0

Gn,r(t)(n− 1)

∫ (r+1)/(n−1)

r/(n−1)

(x− t)2k

(µ(x)
dx ≤ (2n)k

(2k − 1)!

(

∞∑
r=0

Gn,r(t)(n− 1)

∫ (r+1)/(n−1)

r/(n−1)

(x− t)2k

µ(x)
dx)

1
2

(

∞∑
r=0

Gn,r(t)(n− 1)

∫ (r+1)/(n−1)

r/(n−1)

µ2(t)

µ2(x)
dx)

1

2
=

C

nk
.

And,

(2n)k

(2k − 1)!

∞∑
r=0

Gn,r(t)(n− 1)

∫ (r+1)/(n−1)

r/(n−1)

(x− t)2k

µ(x)
dx

=
(2n)k

(2k − 1)!
Bn,k((v − t2k), t) ≤ C

nk

Implies,

∥Bn,k(F2k(ν, .); .)∥p,µ∥ ≤ C

nk
∥h2kν2k∥p,µ.

Consequently,

∥Pn,k(F2k(ν, .); .)∥p,µ∥ ≤
2k−1∑
j=0

∥ Bn,j(F2k(ν, .); .)∥p,µ. ≤
C

nk

2k−1∑
j=0

Cj(n, k)∥h2kν2k∥p,µ.

So,

Ek(ρ)ρ,µ ≤ ∥ρ− Pn,k(ρ)∥ρ,µ ≤ ∥ρ− ϱ− Pn,k(ρ− ϱ)∥p,µ + ∥ϱ− Pn,k(ρ)∥p,µ

C∥ρ− ϱ∥p,µ +
C

nk
∥h2kϱ2k∥p,µ ≤ CΩθ

k(ρ, h)p,µ.

The proof of the theorem is finished. □

Theorem 4.2. (Inverse theorem ) Let ρ ∈ L(p,µ)(X), 1 ≤ p < ∞, ϑ(t) =

(t(1 + t))
1
2 ,and n, k ∈ N such that n ≥ k . Then

Ωϑ
k(ρ, δ)p,µ ≤ C

nk

n∑
i=0

ik−1Ei(ρ, δ)p,µ, δ =
1√
nk

.
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Proof. From equation 4, lemma 3.4 and lemma 3.5, we obtain

Ωϑ
k(ρ, δ)p,µ ≤ Kk(ρ, δ)p,µ ≤ ∥ρ− Pn,k(ρ)∥ρ,µ + δk∥Dk(Pn,k(ρ))∥p,µ

≤ C

nk

n∑
i=1

ik−1∥ρ− Pn,k(ρ)∥p,µ ≤ C

nk

n∑
i=1

ik−1Ei(ρ, δ)p,µ.

□

Theorem 4.3. (Identical theorem ) Let ρ ∈ L(p,µ)(X), 1 ≤ p < ∞, ϑ(t) =

(t(1 + t))
1
2 ,and δ, k ∈ N . Then

E(ρ, δ)p,µ = O(
1√
δ
), δ → ∞ ∼= Ωθ

k(ρ, δ)p,µ = O(δ), δ → 0.

Proof. From direct theorem and inverse theorem conclude the identical theorem.
□

5. Conclusion

In this work, we established some theorems to approximate the unbounded
functions in weighted space by using some linear operators, and we investigated
can obtain of the identical theorem from the direct and inverse theorems in terms
dizian-Totik modulus of smoothness. Also for future studies, we recommend
applying these tools to other mathematical concepts [21, 22, 23, 24, 25, 26, 27].
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