DOI QR코드

DOI QR Code

The Effect of Baekhogainsam-tang on Metabolism through Modulation of the Gut Microbiota and Gene Expression in High-Fat Diet Induced Metabolic Syndrome Animal Model

고지방식이로 유도된 대사증후군 모델 동물에서 백호가인삼탕(白虎加人參湯)의 장내미생물 및 유전자 발현 조절을 통한 대사 개선 효과

  • Min-Jin Cho (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Dongguk University) ;
  • Song-Yi Han (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Dongguk University) ;
  • Soo Kyoung Lim (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Dongguk University) ;
  • Eun-Ji Song (Research Group of Healthcare, Korea Food Research Institute) ;
  • Young-Do Nam (Research Group of Healthcare, Korea Food Research Institute) ;
  • Hojun Kim (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Dongguk University)
  • 조민진 (동국대학교 한의과대학 한방재활의학교실) ;
  • 한송이 (동국대학교 한의과대학 한방재활의학교실) ;
  • 임수경 (동국대학교 한의과대학 한방재활의학교실) ;
  • 송은지 (한국식품연구원 헬스케어연구단) ;
  • 남영도 (한국식품연구원 헬스케어연구단) ;
  • 김호준 (동국대학교 한의과대학 한방재활의학교실)
  • Received : 2023.06.20
  • Accepted : 2023.07.02
  • Published : 2023.07.31

Abstract

Objectives We aimed to find out the improvement effect of Baekhogainsam-tang (Baihu Jia Renshen-tang, BIT) on metabolic syndrome and alteration of microbiota and gene expression. Methods We used male C57BI/6 mice and randomly assigned them into three groups. Normal control group was fed 10% kcal% fat diet, high-fat diet (HFD) group was fed 45% kcal% fat diet and 10% fructose water. BIT group was fed same diet as HFD group and treated by BIT for once daily, 6 days per week, total 8 weeks. We measured their body weight and food intake every week and performed oral glucose tolerance test 1 week before the end of the study. Then we collected the blood sample to measure triglyceride, total cholesterol, high-density lipoprotein cholesterol, insulin, and hemoglobin A1c. We harvested tissue of liver, muscle, fat, and large intestine for quantitative polymerase chain reaction (qPCR) and histopathological examination. Fresh fecal samples were collected from each animal to verify alterations of gut microbiota and we used RNA from liver tissue for microarray analysis. Results The body weight and fat weight of BIT group were reduced compared to HFD group. The qPCR markers usually up-regulated in metabolic syndrome were decreased in BIT group. Bacteroides were higher in BIT group than other groups. There were also differences in gene expressions between two groups such as Cyp3a11 and Scd1. Conclusions We could find out BIT can ameliorate metabolic syndrome and suggest its effect is related to gut microbiota composition and gene expression pattern.

Keywords

Acknowledgement

This study was supported by 'Healthcare R&D of Korean Health Industry Development Institute (HF20C0020)' from the Ministry of Health and Welfare and 'Korea Food Research Institute (E0170600-07)' from the Ministry of Science and ICT.

References

  1. Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Therapeutic Advances in Cardiovascular Disease. 2017;11(8):215-25. https://doi.org/10.1177/1753944717711379
  2. Fahed G, Aoun L, Bou Zer dan M, Allam S, Bou Zer dan M, Bouferraa Y, Assi HI. Metabolic syndrome: updates on pathophysiology and management in 2021. International Journal of Molecular Sciences. 2022;23(2):786.
  3. Lee GB, Kim Y, Par k S, Kim HC, Oh K. Obesity, hypertension, diabetes mellitus, and hypercholesterolemia in Korean adults before and during the COVID-19 pandemic: a special report of the 2020 Korea National Health and Nutrition Examination Survey. Epidemiology and Health. 2022;44:1-8. https://doi.org/10.4178/epih.e2022041
  4. Hong AR, Lim S. Clinical characteristics of metabolic syndrome in Korea, and its comparison with other Asian countries. Journal of Diabetes Investigation. 2015;6(5):508-15. https://doi.org/10.1111/jdi.12313
  5. The Society of Korean Medicine Rehabilitation. Korean rehabilitation medicine. 5th ed. Globooks. 2020:327-8.
  6. Dabke K, Hendrick G, Devkota S. The gut microbiome and metabolic syndrome. The Journal of Clinical Investigation. 2019;129(10):4050-7. https://doi.org/10.1172/JCI129194
  7. Kim BY, Kang SM, Kang JH, Kang SY, Kim KK, Kim KB, Kim B, Kim SJ, Kim YH, Kim JH, Kim JH, Kim EM, Nam GE, Park JY, Son JW, Shin YA, Shin HJ, Oh TJ, Lee H, Jeon EJ, Chung S, Hong YH, Kim CH. 2020 Korean Society for the Study of Obesity Guidelines for the Management of Obesity in Korea. Journal of Obesity & Metabolic Syndrome. 2021;30(2):81-92. https://doi.org/10.7570/jomes21022
  8. Kang JG, Park CY. Anti-obesity drugs: a review about their effects and safety. Diabetes & Metabolism Journal. 2012;36(1):13-25. https://doi.org/10.4093/dmj.2012.36.1.13
  9. Azushima K, Tamura K, Haku S, Wakui H, Kanaoka T, Ohsawa M, Uneda K, Kobayashi R, Ohkia K, Dejima T, Maeda A, Hashimoto T, Oshikawa J, Kobayashi Y, Nomura K, Azushima C, Takeshita Y, Fujino R, Uchida K, Shibuya K, Ando D, Tokita Y, Fujikawa T, Toya Y, Umemura S. Effects of the oriental herbal medicine Bofu-tsusho-san in obesity hypertension: a multicenter, randomized, parallel-group controlled trial (ATH-D-14-01021.R2). Atherosclerosis. 2015;240(1):297-304. https://doi.org/10.1016/j.atherosclerosis.2015.01.025
  10. Ansari A, Bose S, Yadav MK, Wang JH, Song YK, Ko SG, Kim H. CST, an herbal formula, exerts anti-obesity effects through brain-gut-adipose tissue axis modulation in high-fat diet fed mice. Molecules. 2016;21(11):1522.
  11. Heo J. Donguibogam. 1st ed. Bubin. 2015:1292-3.
  12. Shin JI, Baek JS, Shin SM, Cho CS. A study on the hypoglycemic effect and safety of combined-therapy of Baekhogainsam-tang and hypoglycemic agent for type 2 diabetes mellitus patients without complications: a systematic review and meta-analysis. The Journal of Internal Korean Medicine. 2021;42(4):672-86. https://doi.org/10.22246/jikm.2021.42.4.672
  13. Yao B, Pan B, Tian T, Su X, Zhang S, Li H, Li W, Wang Y, Lv S, Zhang Z. Baihu renshen decoction ameliorates type 2 diabetes mellitus in rats through affecting gut microbiota enhancing gut permeability and inhibiting TLR4/NF-κB-mediated inflammatory response. Frontiers in Cellular and Infection Microbiology. 2022;12:1691.
  14. Liu HK, Hung TM, Huang HC, Lee IJ, Chang CC, Cheng JJ, Lin LC, Huang C. Bai-Hu-Jia-Ren-Shen-Tang decoction reduces fatty liver by activating AMP-activated protein kinase in vitro and in vivo. Evidence-Based Complementary and Alternative Medicine. 2015;2015:651734.
  15. Estaki M, Jiang L, Bokulich NA, McDonald D, Gonzalez A, Kosciolek T, Martino C, Zhu Q, Birmingham A, Vazquez-Baeza Y, Dillon MR, Bolyen E, Caporaso JG, Knight R. QIIME 2 Enables comprehensive end-to-end analysis of diverse microbiome data and comparative studies with publicly available data. Current Protocols in Bioniformatics. 2020;70(1):e100.
  16. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research. 2012;41(D1):D590-D6. https://doi.org/10.1093/nar/gks1219
  17. Adhikari B, Kim SW, Kwon YM. Characterization of microbiota associated with digesta and mucosa in different regions of gastrointestinal tract of nursery pigs. International Journal of Molecular Sciences. 2019;20(7):1630.
  18. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods. 2012;9(4):357-9. https://doi.org/10.1038/nmeth.1923
  19. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841-2. https://doi.org/10.1093/bioinformatics/btq033
  20. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang J. Bioconductor: open software development for computational biology and bioinformatics. Genome Biology. 2004;5(10):1-16. https://doi.org/10.1186/gb-2004-5-10-r80
  21. R: a language and environment for statistical computing [Internet]. Vienna University of Economics and Business. 1997 [cited 2023 May 15]. Available from: URL: https://www.r-project.org/
  22. Yoshinari K, Takagi S, Yoshimasa T, Sugatani J, Miwa M. Hepatic CYP3A expression is attenuated in obese mice fed a high-fat diet. Pharmaceutical Research. 2006;23(6):1188-200. https://doi.org/10.1007/s11095-006-0071-6
  23. Brocker CN, Kim D, Melia T, Karri K, Velenosi TJ, Takahashi S, Aibara D, Bonzo JA, Levi M, Waxman DJ, Gonzalez FJ. Long non-coding RNA Gm15441 attenuates hepatic inflammasome activation in response to PPARA agonism and fasting. Nature Communications. 2020;11(1):5847.
  24. Han Y, Choi JY, Kwon EY. Lycopus lucidus turcz water extract ameliorates the metabolic disorder by up-regulated major urinary protein expression in high-fat diet-induced obesity. Current Issues in Molecular Biology. 2022;44(5):2417-30. https://doi.org/10.3390/cimb44050165
  25. Kashtanova DA, Popenko AS, Tkacheva ON, Tyakht AB, Alexeev DG, Boytsov SA. Association between the gut microbiota and diet: fetal life, early childhood, and further life. Nutrition. 2016;32(6):620-7. https://doi.org/10.1016/j.nut.2015.12.037
  26. Hatting M, Tavares CD, Sharabi K, Rines AK, Puigserver P. Insulin regulation of gluconeogenesis. Annals of the New York Academy of Sciences. 2018;1411(1):21-35. https://doi.org/10.1111/nyas.13435
  27. Shao J, Qiao L, Janssen RC, Pagliassotti M, Friedman JE. Chronic hyperglycemia enhances PEPCK gene expression and hepatocellular glucose production via elevated liver activating protein/liver inhibitory protein ratio. Diabetes. 2005;54(4):976-84. https://doi.org/10.2337/diabetes.54.4.976
  28. Murakami S, Funahashi K, Tamagawa N, Ning M, Ito T. Taurine ameliorates streptozotocin-induced diabetes by modulating hepatic glucose metabolism and oxidative stress in mice. Metabolites. 2022;12(6):524.
  29. Van Schaftingen E, Gerin I. The glucose-6-phosphatase system. Biochemical Journal. 2002;362(3):513-32. https://doi.org/10.1042/bj3620513
  30. Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiological Reviews. 2013;93(3):993-1017. https://doi.org/10.1152/physrev.00038.2012
  31. Zhang L, Zhang Z, Li Y, Liao S, Wu X, Chang Q, Lian B. Cholesterol induces lipoprotein lipase expression in a tree shrew (Tupaia belangeri chinensis) model of non-alcoholic fatty liver disease. Scientific Reports. 2015;5(1):1-12. https://doi.org/10.1038/srep15970
  32. Wang Y, Nakajima T, Gonzalez FJ, Tanaka N. PPARs as metabolic regulators in the liver: lessons from liver-specific PPAR-null mice. International Journal of Molecular Sciences. 2020;21(6):2061.
  33. Sanders FW, Griffin JL. De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biological Reviews. 2016;91(2):452-68. https://doi.org/10.1111/brv.12178
  34. Bruce CR, Hoy AJ, Turner N, Watt MJ, Allen TL, Carpenter K, Cooney GJ, Febbraio MA, Kraegen EW. Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes. 2009;58(3):550-8. https://doi.org/10.2337/db08-1078
  35. Baar K, Song Z, Semenkovich CF, Jones TE, Han DH, Nolte LA, Ojuka EO, Chen M, Holloszy JO. Skeletal muscle overexpression of nuclear respiratory factor 1 increases glucose transport capacity. The FASEB Journal. 2003;17(12):1666-73. https://doi.org/10.1096/fj.03-0049com
  36. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nature Reviews Immunology. 2011;11(2):85-97. https://doi.org/10.1038/nri2921
  37. Lee B, Moon KM, Kim CY. Tight junction in the intestinal epithelium: its association with diseases and regulation by phytochemicals. Journal of Immunology Research. 2018;2018:2645465.
  38. Yoshida N, Yamashita T, Osone T, Hosooka T, Shinohara M, Kitahama S, Sasaki K, Sasaki D, Yoneshiro T, Suzuki T, Emoto T, Saito Y, Ozawa G, Hirota Y, Kitaura Y, Shimomura Y, Okamatsu-Ogura Y, Saito M, Kondo A, Kajimura S, Inagaki T. Ogawa W, Yamada T, Hirata KI. Bacteroides spp. promotes branched-chain amino acid catabolism in brown fat and inhibits obesity. Iscience. 2021;24(11):103342.
  39. Sampath H, Ntambi JM. The role of stearoyl-CoA desaturase in obesity, insulin resistance, and inflammation. Annals of the New York Academy of Sciences. 2011;1243(1):47-53. https://doi.org/10.1111/j.1749-6632.2011.06303.x
  40. Yang JY, Lee YS, Kim Y, Lee SH, Ryu S, Fukuda S, Hase K, Yang CS, Lim HS, Kim MS, Kim HM, Ahn SH, Kwon BE, Ko HJ, Kweon MN. Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunology. 2017;10(1):104-16. https://doi.org/10.1038/mi.2016.42