DOI QR코드

DOI QR Code

육계사의 차열 페인트 및 히트펌프 적용에 따른 내부 기온 변화 분석

Analysis of Internal Temperature Change according to the Application of Thermal Insulation Paint and Heat Pump in Broilers

  • 문준섭 (국립공주대학교 스마트팜공학과 ) ;
  • 김락우 (국립공주대학교 스마트팜공학과) ;
  • 이승헌 (국립공주대학교 농공학과 ) ;
  • 이상민 (한국기계연구원 무탄소연료발전연구실 ) ;
  • 최상규 (한국기계연구원 무탄소연료발전연구실 )
  • Jun-Seop Mun (Department of SmartFarm Engineering, Kongju National University) ;
  • Rack-Woo Kim (Department of SmartFarm Engineering, Kongju National University) ;
  • Seung-Hun Lee (Department of Agriculture Engineering, Kongju National University) ;
  • Sang Min Lee (Department of Zero-carbon Fuel and Power Generation, KIMM) ;
  • Sang Kyu Choi (Department of Zero-carbon Fuel and Power Generation, KIMM)
  • 투고 : 2023.04.06
  • 심사 : 2023.06.10
  • 발행 : 2023.07.31

초록

본 연구에서는 육계사에 차열 페인트와 히트펌프의 적용에 따른 내부 온도 변화를 분석 하였다. 이를 위하여 환기율, 환기 방법, 시간별 환기 변화에 따른 실험 조건을 설정하였으며 육계사 외부 및 내부 기온을 측정하였다. 그 결과, 차열 페인트를 도포한 육계사에서는 최대 1-2℃ 실내 기온 상승을 억제하는 효과가 나타났으며 히트펌프를 가동한 육계사에서는 외기 온도의 영향을 제일 적게 받는 환기율 0%일 때 내부 기온 감소가 제일 크게 나타났다. 계사 내부의 온도가 외기 온도보다 높을 경우에는 환기율을 높게 설정하여 환기팬을 이용한 냉방이 더욱 효과적이나 계사 내부 온도가 외기 온도와 유사하거나 낮을 경우에는 히트펌프를 이용하는 것이 가장 효과적일 것으로 판단된다. 히트펌프 가동 시 외기 온도의 영향이 적은 환기율을 0%로 설정하였을 때 내부 기온이 가장 큰 폭으로 감소하였으나 실제 육계사에서는 분진, 이물질, 암모니아 등을 고려하여 최소환기율 정도로 환기율을 설정한 후 히트펌프를 가동하는 것이 가장 효율적일 것으로 판단된다. 본 연구는 실험 기간이 짧아 데이터가 많지 않으며 실제 육계가 사육되고 있는 환경에서 실험을 진행한 것이 아니라는 한계가 있다. 향후 후속 연구로 실제 닭이 사육되고 있는 환경에서의 히트펌프 효과 분석과 히트펌프의 전력사용량, 냉방부하, 환기팬 가동시간 등 다양한 환경인자를 포함한 연구가 진행되어야 할 것으로 판단된다.

Heat stress causes a decrease in immunity and disease occurrence in livestock, increasing mortality and impairing productivity. In particular, chickens are very vulnerable to high temperatures compared to other livestock species because their entire body is covered with feathers and sweat glands are not developed. Currently, air conditioning systems are essential in broiler houses to prevent high-air temperature damage to broilers, but conventional cooling facilities are greatly affected by the external environment, so there are limits to their use. In this study, to propose a cooling method, thermal insulation paint and a heat pump were apply in the broiler houses to evaluate the temperature reduction effect. The heat pump experiment was to analyze the cooling effect according to the change in ventilation rate and propose an appropriate. As a result of the experiment, the heat-insulating paint reduced the temperature of the broiler houses by maximum 1-2℃, and in the broiler houses where the heat pump was operated, the temperature decrease was the largest when the ventilation rate was the lowest. When the air temperature in the house is similar to or lower than the outside air temperature, it is considered to be most effective to use a heat pump while maintaining only the minimum ventilation rate.

키워드

과제정보

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 연구사업(No. 2021M3F8A1046164)의 지원을 받아 수행된 연구임.

참고문헌

  1. Bustamante E., F.J. Garcia-Diego, S. Calvet, A.G. Torres, and A. Hospitaler 2015, Measurement and numerical simulation of air velocity in a tunnel-ventilated broiler house. Sustainability 7:2066-2085. doi:10.3390/su7022066
  2. Cayli A., A. Akyuz, S. ustun, and B. Yeter 2021, Efficiency of two different types of evaporative cooling systems in broiler houses in Eastern Mediterranean climate conditions. Therm Sci Eng Prog 22:100844. doi:10.1016/j.tsep.2021.100844
  3. Daghir N.J. 2009, Nutritional strategies to reduce heat stress in broilers and broiler breeders. Lohmann Inf 44:6-15.
  4. Jahromi M.F., Y. Wesam Altaher, P. Shokryazdan, R. Ebrahimi, M. Ebrahimi, Z. Idrus, V. Tufarelli, and J.B. Liang 2016, Dietary supplementation of a mixture of Lactobacillus strains enhances performance of broiler chickens raised under heat stress conditions. Int J Biometeorol 60:1099-1110. doi:10.1007/s00484-015-1103-x
  5. Korea Environment Institute (KEI) 2020, Heat wave impact report for 2020. KEI, Sejong, Korea. (in Korean)
  6. Korea Insurance Development Institute (KIDI) 2019, Livestock accident insurance loss press release. Available via https://www.kidi.or.kr/home/homeIndex.do. Accessed 08 July 2022 (in Korean)
  7. Korea Meteorological Administration (KMA) 2022, Meteorological data open portal. http://www.kma.go.kr. Accessed 08 July 2022 (in Korean)
  8. Kwon G.S. 2020, Measures to prevent damage from heat waves - Environmental management of chickens to prevent damage from heat waves in summer. Korean Poult J 52:124-127. (in Korean)
  9. Lee J.H. 2013, Farm management in preparation for summer heatwave - Internal temperature and humidity management of cages in preparation for heatwave. Korean Poult J 45:114-117. (in Korean)
  10. Lee K.R., J.H. Seong, Y.K. Han, and W.H. Lee 2019, Comparison of rooftop surface temperature and indoor temperature for the evaluation of cool roof performance according to the rooftop colors in summer: Using thermal infrared camera mounted on UAV. J Korean Soc Surv Geod Photogramm Cartogr 37:9-18. (in Korean)
  11. Liang Y., G.T. Tabler, and S. Dridi 2020, Sprinkler technology improves broiler production sustainability: from stress alleviation to water usage conservation: A mini review. Front Vet Sci 7:544814. doi:10.3389/fvets.2020.544814
  12. Mesa D., E. Muniz, A. Souza, and B. Geffroy 2017, Broiler-housing conditions affect the performance. Braz J Poult Sci 19:263-272. doi:10.1590/1806-9061-2016-0346
  13. Ministry of Agriculture, Food and Rural Affairs (MAFRA) 2019, Scale of high-temperature damage to livestock due to heat wave. http://www.mafra.go.kr. Accessed 08 July 2022 (in Korean)
  14. Ministry of Agriculture, Food and Rural Affairs (MAFRA) 2021, Livestock mortality due to heat wave. http://www.mafra.go.kr. Accessed 08 July 2022 (in Korean)
  15. Na J.C., J. Hwangboa, J.H. Kim, H.G Kang, M.J Kim, D.W Kim, H.C Choi, and E.C. Hong 2012, Performance and carcass ratio of large-type female broiler at different stocking densities. Korean J Poult Sci 39:305-310. (in Korean) doi:10.5536/KJPS.2012.39.4.305
  16. Oloyo A. 2018, The use of housing system in the management of heat stress in poultry production in hot and humid climate: A review. Poult Sci J 6:1-9.
  17. Paek Y., G.C. Kang, J.P. Moon, T.S. Lee, and J.K. Kwon 2016, Optimum design of environmental improvement system for poultry buildings by air conditioning and drinking water using heat pump. J Korean Soc Mech Technol 18:141-147. (in Korean) doi:10.17958/ksmt.18.1.201602.141
  18. Park J.C., K.J. Han, and Y.R. Chae 2019, Correlation analysis between livestock mortality caused by heat wave and news big data. J Assoc Korean Geogr 8:529-543. (in Korean) doi:10.25202/JAKG.8.3.13
  19. Saeed M., G. Abbas, M. Alagawany, A.A. Kamboh, M.E. Abd El-Hack, A.F. Khafaga, and S. Chao 2019, Heat stress management in poultry farms: A comprehensive overview. J Therm Biol 84:414-425. doi:10.1016/j.jtherbio.2019.07.025
  20. Song B.G., G.A. Kim, and K.H. Park 2016, Reduction in indoor and outdoor temperature of office building with cool roof. KIEAE J 16:95-101. (in Korean) doi:10.12813/kieae.2016.16.6.095
  21. Zajicek M., and P. Kic 2012, Improvement of the broiler house ventilation using the CFD simulation. Agron Res 10:235-242.