DOI QR코드

DOI QR Code

Effects of fission product doping on the structure, electronic structure, mechanical and thermodynamic properties of uranium monocarbide: A first-principles study

  • Ru-Ting Liang (School of Chemistry and Chemical Engineering, University of South China) ;
  • Tao Bo (Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences) ;
  • Wan-Qiu Yin (School of Chemistry and Chemical Engineering, University of South China) ;
  • Chang-Ming Nie (School of Chemistry and Chemical Engineering, University of South China) ;
  • Lei Zhang (Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences) ;
  • Zhi-Fang Chai (Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences) ;
  • Wei-Qun Shi (Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences)
  • Received : 2023.01.28
  • Accepted : 2023.04.09
  • Published : 2023.07.25

Abstract

A first-principle approach within the framework of density functional theory was employed to study the effect of vacancy defects and fission products (FPs) doping on the mechanical, electronic, and thermodynamic properties of uranium monocarbide (UC). Firstly, the calculated vacancy formation energies confirm that the C vacancy is more stable than the U vacancy. The solution energies indicate that FPs prefer to occupying in U site rather than in C site. Zr, Mo, Th, and Pu atoms tend to directly replace U atom and dissolve into the UC lattice. Besides, the results of the mechanical properties show that U vacancy reduces the compressive and deformation resistance of UC while C vacancy has little effect. The doping of all FPs except He has a repairing effect on the mechanical properties of U1-xC. In addition, significant modifications are observed in the phonon dispersion curves and partial phonon density of states (PhDOS) of UC1-x, ZrxU1-xC, MoxU1-xC, and RhxU1-xC, including narrow frequency gaps and overlapping phonon modes, which increase the phonon scattering and lead to deterioration of thermal expansion coefficient (αV) and heat capacity (Cp) of UC predicted by the quasi harmonic approximation (QHA) method.

Keywords

Acknowledgement

We acknowledge financial support from National Natural Science Foundation of China (Nos. 12105196), China.

References

  1. T.J. Abram, A technology roadmap for generation-IV nuclear energy systems, in: Tech. Rep. GIF-002-00, USDOE Office of Nuclear Energy, Science and Technology, U.S. Department of Energy, Dec. 2002.
  2. D. Butler, Energy: nuclear power's new dawn, Nature 429 (6989) (2004) 238-240. https://doi.org/10.1038/429238a
  3. D. Petti, D. Crawford, N. Chauvin, Fuels for advanced nuclear energy systems, MRS Bull. 34 (1) (2009) 40-45. https://doi.org/10.1557/mrs2009.11
  4. L. Yang, N. Kaltsoyannis, Incorporation of Kr and Xe in uranium mononitride: a density functional theory study, J. Phys. Chem. C 125 (48) (2021) 26999-27008. https://doi.org/10.1021/acs.jpcc.1c08523
  5. X. Yang, Y. Yang, Y. Liu, Z. Wang, J. Warna, Z. Xu, P. Zhang, Investigating the solution and diffusion properties of hydrogen in a-Uranium by first-principles calculations, Prog. Nucl. Energy 122 (2020), 103268.
  6. M. Freyss, First-principles study of uranium carbide: accommodation of point defects and of helium, xenon, and oxygen impurities, Phys. Rev. B 81 (1) (2010), 014101.
  7. R. Ducher, R. Dubourg, M. Barrachin, A. Pasturel, First-principles study of defect behavior in irradiated uranium monocarbide, Phys. Rev. B 83 (10) (2011), 104107.
  8. E. Bevillon, R. Ducher, M. Barrachin, R. Dubourg, First-principles study of the stability of fission products in uranium monocarbide, J. Nucl. Mater. 426 (1-3) (2012) 189-197. https://doi.org/10.1016/j.jnucmat.2012.03.014
  9. E. Bevillon, R. Ducher, M. Barrachin, R. Dubourg, Investigation of the diffusion of atomic fission products in UC by density functional calculations, J. Nucl. Mater. 434 (1-3) (2013) 240-247. https://doi.org/10.1016/j.jnucmat.2012.11.030
  10. G.-Y. Huang, G. Pastore, B.D. Wirth, First-principles study of intrinsic point defects and Xe impurities in uranium monocarbide, J. Appl. Phys. 128 (14) (2020), 145102.
  11. G.-Y. Huang, G. Pastore, B.D. Wirth, First-principles study of Xe-vacancy defect clusters in UC, Comput. Mater. Sci. 192 (2021), 110365.
  12. T. Ejima, K. Murata, S. Suzuki, T. Takahashi, S. Sato, T. Kasuya, Y. Onuki, H. Yamagami, A. Hasegawa, T. Ishii, Electronic structure of UC studied by X-ray photoemission and bremsstrahlung isochromat spectroscopy, Physica B 186 (1993) 77-79. https://doi.org/10.1016/0921-4526(93)90499-V
  13. V.H. Mankad, P.K. Jha, Thermodynamic properties of nuclear material uranium carbide using density functional theory, J. Therm. Anal. Calorim. 124 (1) (2015) 11-20. https://doi.org/10.1007/s10973-015-5106-y
  14. H. Shi, P. Zhang, S.-S. Li, B. Sun, B. Wang, Electronic structures and mechanical properties of uranium monocarbide from first-principles and calculations, Phys. Lett. 373 (39) (2009) 3577-3581. https://doi.org/10.1016/j.physleta.2009.07.074
  15. U.D. Wdowik, P. Piekarz, D. Legut, G. Jaglo, Effect of spin-orbit and on-site Coulomb interactions on the electronic structure and lattice dynamics of uranium monocarbide, Phys. Rev. B 94 (5) (2016), 054303.
  16. J.A. Jackman, T.M. Holden, W.J. Buyers, V.D.P. de, O. Vogt, J. Genossar, Systematic study of the lattice dynamics of the uranium rocksalt-structure compounds, Phys. Rev. B 33 (10) (1986) 7144-7153. https://doi.org/10.1103/PhysRevB.33.7144
  17. D. Manara, F. De Bruycker, A.K. Sengupta, R. Agarwal, H.S. Kamath, Thermodynamic and thermos-physical properties of the actinide carbides, Comprehens. Nucl. Mater. (2012) 87-137.
  18. D. Manara, R. Agarwal, The actinide carbides, Comprehens. Nucl. Mater. (2020) 155-201.
  19. G. Vasudevamurthy, A.T. Nelson, Uranium carbide properties for advanced fuel modeling - a review, J. Nucl. Mater. 558 (2022), 153145.
  20. G. Pastore, A. Toptan, Fresh Fuel Properties: Ceramic Compounds, Encyclopedia of Nuclear Energy, 2021, pp. 343-355.
  21. J.B. Moser, O.L. Kruger, Thermal conductivity and heat capacity of the monocarbide, monophosphide, and monosulfide of uranium, J. Appl. Phys. 38 (8) (1967) 3215-3222. https://doi.org/10.1063/1.1710092
  22. U.D. Wdowik, V. Buturlim, L. Havela, D. Legut, Effect of carbon vacancies and oxygen impurities on the dynamical and thermal properties of uranium monocarbide, J. Nucl. Mater. 545 (2021), 152547.
  23. M.J. Rahman, B. Szpunar, J.A. Szpunar, Dependence of thermal conductivity on fission-product defects and vacancy concentration in thorium dioxide, J. Nucl. Mater. 532 (2020), 152050.
  24. G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1) (1996) 15-50. https://doi.org/10.1016/0927-0256(96)00008-0
  25. P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964) 864-871. https://doi.org/10.1103/PhysRev.136.B864
  26. P.E. Blochl, Projector augmented-wave method, Phys. Rev. B 50 (24) (1994) 17953-17979. https://doi.org/10.1103/PhysRevB.50.17953
  27. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18) (1996) 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  28. A. Togo, I. Tanaka, First principles phonon calculations in materials science, Scripta Mater. 108 (2015) 1-5. https://doi.org/10.1016/j.scriptamat.2015.07.021
  29. X. Gonze, C. Lee, Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Phys. Rev. B 55 (16) (1997), 10355.
  30. M.J.R.o.P.i.P. Brodsky, Magnetic properties of the actinide elements and their metallic compounds, Rep. Prog. Phys. 41 (10) (1978) 1547.
  31. R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. 65 (5) (1952) 349.
  32. A.J.A.C. Austin, Carbon positions in uranium carbides, Acta Crystallogr. 12 (2) (1959) 159-161. https://doi.org/10.1107/S0365110X59000445
  33. Z.-G. Mei, B. Ye, A.M. Yacout, B. Beeler, Y. Gao, First-principles study of the surface properties of uranium carbides, J. Nucl. Mater. 542 (2020), 152257.
  34. M.R. Castell, S.L. Dudarev, C. Muggelberg, A.P. Sutton, G.A.D. Briggs, D.T. Goddard, Surface structure and bonding in the strongly correlated metal oxides NiO and UO2, J. Vac. Sci. Technol. A: Vacuum, Surfaces, and Films 16 (3) (1998) 1055-1058. https://doi.org/10.1116/1.581232
  35. J. Routbort, R.J.J.o.N.M. Singh, Elastic, diffusional, and mechanical properties of carbide and nitride nuclear fuels-a review, J. Nucl. Mater. 58 (1) (1975) 78e114.
  36. V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code, Comput. Phys. Commun. 267 (2021), 108033.
  37. Y. Le Page, P. Saxe, Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations, Phys. Rev. B 63 (17) (2001), 174103.
  38. H. McSkimin, P. Andreatch Jr., Elastic moduli of diamond as a function of pressure and temperature, J. Appl. Phys. 43 (7) (1972) 2944-2948. https://doi.org/10.1063/1.1661636
  39. S. Chandrasekar, S. Santhanam, A calculation of the bulk modulus of polycrystalline materials, J. Mater. Sci. 24 (12) (1989) 4265-4267. https://doi.org/10.1007/BF00544497
  40. W. Voigt, Lehrbuch der Kristallphysik, Verlag und Druck, Von BG Teubner, Leipzig und Berlin, 1928, pp. 1-979.
  41. F. Mouhat, F.-X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90 (22) (2014), 224104.
  42. J.-J. Ma, C.-B. Zhang, R. Qiu, P. Zhang, B. Ao, B.-T. Wang, Pressure-induced structural and electronic phase transitions of uranium trioxide, Phys. Rev. B 104 (17) (2021), 174103.
  43. S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. Series 7 45 (367) (1954) 823-843. https://doi.org/10.1080/14786440808520496
  44. I.N. Frantsevich, F.F. Voronov, S.A. Bokuta, Elastic constants and elastic moduli of metals and insulators handbook, Elastic Const. Elastic Moduli Metal. Insulat. Handbook (1983) 60-180.
  45. W. Cochran, Crystal stability and the theory of ferroelectricity, Phys. Rev. Lett. 3 (9) (1959) 412-414. https://doi.org/10.1103/PhysRevLett.3.412
  46. A. Togo, L. Chaput, I. Tanaka, G. Hug, First-Principles phonon calculations of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2, Phys. Rev. B 81 (2010), 174301.
  47. B.D. Sahoo, K.D. Joshi, T.C. Kaushik, Structural stability of uranium carbide (UC) under high pressure: ab-initio study, Comput. Condens. Matte. 21 (2019), e00431.
  48. M. Freyss, B. Dorado, E. Vathonne, M. Christensen, W. Wolf, A. Mavromaras, Behaviour of Defects, Fission Products and Oxygen and Effect of Non-stoichiometry in Bulk Actinide Carbides, F-BRIDGE Document, D-122-Revision 0, CEA, Oct. 2012, pp. 1-38.
  49. S. Zhao, J. Long, Theoretical investigation of the electronic structure, optical, elastic and thermodynamics properties of a newly binary boron nitride (TB3N3), Physica B 459 (2015) 134-139. https://doi.org/10.1016/j.physb.2014.11.094