DOI QR코드

DOI QR Code

Differential die-away technology applied to detect special nuclear materials

  • Lianjun Zhang (Department of Nuclear Technology and Application, China Institute of Atomic Energy) ;
  • Mengjiao Tang (Department of Nuclear Technology and Application, China Institute of Atomic Energy) ;
  • Chen Zhang (Department of Nuclear Technology and Application, China Institute of Atomic Energy) ;
  • Yulai Zheng (Department of Nuclear Technology and Application, China Institute of Atomic Energy) ;
  • Yong Li (Department of Nuclear Technology and Application, China Institute of Atomic Energy) ;
  • Chao Liu (Department of Nuclear Technology and Application, China Institute of Atomic Energy) ;
  • Qiang Wang (Department of Nuclear Technology and Application, China Institute of Atomic Energy) ;
  • Guobao Wang (Department of Nuclear Technology and Application, China Institute of Atomic Energy)
  • Received : 2022.11.07
  • Accepted : 2023.01.27
  • Published : 2023.07.25

Abstract

Differential die-away analysis (DDAA) technology is a special nuclear material (SNM) active detection analysis technology. Be a nuclear material shielded or not, the technology can reveal the existence of nuclear materials by inducing fission from an external pulsed neutron source. In this paper, a detection model based on DDAA analysis technology was established by geant4 Monte Carlo simulation software, and the optimal sensitivity of the detection system is achieved by optimizing different configurations. After the geant4 simulation and optimization, a prototype was established, and experimental research was carried out. The result shows that the prototype can detect 200 g of 235U in a steel cylinder shield that's of 1.5 cm in inner diameter, 10 cm in thickness and 280 kg in weight.

Keywords

Acknowledgement

This work was supported by the Continuous basic scientific research project.

References

  1. IAEA Incident and Trafficking Database (ITDB), Incidents of Nuclear and Other Radiocation Material Out of Regulator Control 2021 Fact Sheet [EB/OL], 2022, 07.15), https://www.iaea.org/sites/default/files/22/01/itdb-factsheet.pdf.
  2. Asaf Durakovic, Medical effects of a transuranic "dirty bomb", Mil. Med.: Off. J. AMSUS,Soc. Fed. Health. Agencies. 182 (3) (2017) e1591-e1595. https://doi.org/10.7205/MILMED-D-16-00256
  3. U. Bravar, R.S. Woolf, P.J. Bruillard, et al., Calibration of the fast neutron imaging telescope (FNIT) prototype detector, IEEE Trans. Nucl. Sci. 56 (5) (2009) 2947-2954. https://doi.org/10.1109/TNS.2009.2028025
  4. J.L. Jones, W.Y. Yoon, D.R. Norman, et al., Photonuclear-based, nuclear material detection system for cargo containers, Nucl. Instrum. Methods Phys. Res. B 241 (1/4) (2005) 770-776. https://doi.org/10.1016/j.nimb.2005.07.242
  5. D. Cester, G. Nebbia, L. Stevanato, et al., Special nuclear material detection with a mobile multi-detector system, Nucl. Instrum. Methods Phys. Res. A 663 (1) (2012) 55-63. https://doi.org/10.1016/j.nima.2011.10.011
  6. R. Remetti, G. Gandolfo, L. Lepore, et al., In field application of differential die-away time technique for detecting gram quantities of fissile materials, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. (870) (2017) 123-130.
  7. R. Rober t, C. David, T. Scott, Rattling nucleons: new developments in active interrogation of special nuclear material, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 663 (1) (2012) 75-79. https://doi.org/10.1016/j.nima.2011.09.052
  8. A. Belian, H.O. Menlove, M. T, et al., New design of the differential die-away self-interrogation instrument for spent fuel assay, Nucl. Mater. Manag. 40 (3) (2012) 58-60.
  9. H.O. Menlove, S.H. Menlove, S.J. Tobin, Fissile and fertile nuclear material measurements using a new differential die-away self-interrogation technique, Nucl. Instrum. Methods Phys. Res. 602 (2) (2009) 588-593. https://doi.org/10.1016/j.nima.2009.01.157
  10. A.C. Kaplan, V. Henzl, H.O. Menlove, M. T, et al., Determination of total plutonium content in spent nuclear fuel assemblies with the differential die-away self-interrogation instrument, Nucl. Instrum. Methods Phys. Res. 764 (2014) 347-351. https://doi.org/10.1016/j.nima.2014.08.003
  11. K.A. Jordan, T. Gozani, Pulsed neutron differential die away analysis for detection of nuclear materials, Nucl. Instrum. Methods Phys. Res. B 261 (2007) 365-368. https://doi.org/10.1016/j.nimb.2007.04.294
  12. N. Cherubini, A. Dodaro, G. Gandolfo, et al., Field prototype of the ENEA neutron active interrogation device for the detection of dirty bombs, Challenges 7 (2016) 1-9. https://doi.org/10.3390/challe7010001
  13. K.A. Jordan, T. Gozani, J. Vujic, Differential die-away analysis system response modeling and detector design, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 589 (2008) 436-444. https://doi.org/10.1016/j.nima.2008.02.039
  14. Yogesh, Ashish Kashyap, et al., Differential Die-Away Analysis for detection of 235U in metallic matrix, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 806 (2016) 1-4. https://doi.org/10.1016/j.nima.2015.09.093
  15. K.A. Jordana, T. Gozani, Detection of 235U in hydrogenous cargo with Differential Die-Away Analysis and optimized neutron detectors, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 579 (1) (2007) 388-390. https://doi.org/10.1016/j.nima.2007.04.083
  16. K.A. Jordan, J. Vujic, E. Phillips, et al., Improving differential die-away analysis via the use of neutron poisons in detectors, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 579 (1) (2007) 404-406. https://doi.org/10.1016/j.nima.2007.04.088
  17. S. Agostinelli, J. Allison, K. Amako, et al., Geant4-a simulation toolkit, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506 (3) (2003) 250-303. https://doi.org/10.1016/S0168-9002(03)01368-8
  18. K.A. Jordan, T. Gozani, J. Vujic, Differential die-away analysis system response modeling and detector design, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 598 (3) (2008) 436-444. https://doi.org/10.1016/j.nima.2008.02.039
  19. V. Mikerov, Yu Barmakov, E. Bogolubov, et al., Portable neutron generators of VNIIA and their applications, Proc. Sci. 25 (2007) 1-7.