DOI QR코드

DOI QR Code

Estimation of fuel operating ranges of fusion power plants

  • Received : 2022.09.14
  • Accepted : 2023.04.16
  • Published : 2023.07.25

Abstract

The fuel operating ranges of fusion tokamak-based power plants are estimated using the improved engineering breakeven equation. The Lawson criterion equations are derived in the form of a triple product with a focus on engineering breakeven and the subbreakeven operating range. The relationship of fuel parameters to the power plant net efficiency is outlined. Analysis shows that the operating ranges of the suitable fuel parameters form a closed area, the size of which affects the net efficiency of the power plant. The obtained fuel operating ranges confirm the well-known fact that DT fuel is currently the only fusion fuel useable in tokamak-based fusion power plants. It is also shown that the energy utilization of pB fuel is possible in the subbreakeven operating range but is conditioned by the very high efficiency of the power plant equipment. For the utilization of DD, DHe3, and pB fuels, the required magnetic fields are indicatively estimated.

Keywords

Acknowledgement

The work was supported by Strategy AV21 of the Czech Academy of Sciences within the research program "Sustainable Energy" and by European Regional Development Fund - Project "Center for Advanced Applied Science" (No. CZ 02.1.01/0.0/0.0/16e019/0000778).

References

  1. S. Entler, et al., Approximation of the economy of fusion energy, Energy 152 (2018) 489. 
  2. ITER, online, https://www.iter.org. (Accessed 18 May 2022). 
  3. G. Federici, et al., European DEMO design strategy and consequences for materials, Nucl. Fusion 57 (2017), 092002. 
  4. T. Donne, et al., Fusion Electricity, a Roadmap to the Realization of Fusion Energy, EUROfusion, Garching, 2018, 2018. 
  5. J. Mlynar, FOCUS ON: JET, Interview with JD Lawson, EFDA JET Close Support Unit, Culham Science Centre, Abingdon, United Kingdom, 2007. 
  6. J.D. Lawson, Some criteria for a power producing thermonuclear reactor, Proc. Phys. Soc. B 70 (1957) 6. 
  7. S. Glasstone, et al., Controlled Thermonuclear Reactions, Robert E. Krieger Publishing Company Huntington, New York, 1975. 
  8. J. Wesson, Tokamaks, fourth ed., Oxford University Press Inc., Oxford, UK, 2011. 
  9. J.P. Freidberg, Plasma Physics and Fusion Energy, Cambridge University Press, New York, 2007. 
  10. M. Kikuchi, et al., Fusion Physics, International Atomic Energy Agency, Vienna, 2012. 
  11. G. Van Oost, et al., Thermonuclear burn criteria, Fusion Sci. Technol. 61 (2012) 17-26.  https://doi.org/10.13182/FST12-A13489
  12. D. Reiter, et al., Burn condition, helium particle confinement and exhaust efficiency, Nucl. Fusion 30 (1990) 2141. 
  13. E. Rebhan, et al., Effect of helium concentration on ignition curves with energy confinement time including radiation losses, Nucl. Fusion 36 (1996) 264. 
  14. W.R. Fundamenski, Evolution and status of D-3He fusion: a critical review, Fusion Technol. 29 (1996) 313. 
  15. S. Entler, Engineering breakeven, J. Fusion Energy 34 (2015) 513. 
  16. J. Ongena, et al., Magnetic-confinement fusion, Nat. Phys. 12 (2016) 398. 
  17. L.J. Wittenberg, et al., A review of 3He resources and acquisition for use as fusion fuel, Fusion Technol. 21 (1992) 2230. 
  18. ESA, online, https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Space_for_Earth/Energy/Helium-3_mining_on_the_lunar_surface. (Accessed 11 September 2021). 
  19. H. Hora, et al., Road map to clean energy using laser beam ignition of boron-hydrogen fusion, Laser Part. Beams 35 (2017) 730-740.  https://doi.org/10.1017/S0263034617000799
  20. E.J. Strait, Stability of high beta tokamak plasmas, Phys. Plasmas 1 (1994) 1415. 
  21. H. Zohm, Magnetohydrodynamic Stability of Tokamaks, Wiley-VCH, Weinheim, Germany, 2015. 
  22. A.S. Richardson, 2019 NRL Plasma Formulary, NRL/PU/6770-19-652, Naval Research Laboratory, Washington, USA, 2019. 
  23. H.S. Bosch, et al., Improved formulas for fusion cross-sections and thermal reactivities, Nucl. Fusion 32 (1992) 611. 
  24. W.M. Nevins, et al., The thermonuclear fusion rate coefficient for p-11B reactions, Nucl. Fusion 40 (2000) 865. 
  25. R. McAdams, Beyond ITER: neutral beams for a demonstration fusion reactor (DEMO), Rev. Sci. Instrum. 85 (2014), 02B319. 
  26. A. Simonin, et al., System Efficiency Improvements: Feasibility of Energy Recovery and of Photo-Neutralizer Schemes, EUROfusion Internal Document IDM EFDA_D_2MCBG4, 1.2, EUROfusion, 2013. 
  27. J. Hovingh, et al., Efficiency of injection of neutral beams into thermonuclear reactions, Nucl. Fusion 14 (1974) 629. 
  28. F. Rimini, et al., Pulse 99971 Record, JET Internal Logbook Record, JET, EUROfusion, 2021. 
  29. J. How, PD - Plant Description, Internal Document ITER IDM 2X6K67, ITER, 2009. 
  30. R. Kemp, DEMO2 Reference Design May 2015, Internal Document EUROfusion IDM EU_D_2LCBVU, EUROfusion, 2015. 
  31. P.E. Stott, The feasibility of using D-3He and D-D fusion fuels, Plasma Phys. Contr. Fusion 47 (2005) 1305. 
  32. F. Albajar, et al., Improved calculation of synchrotron radiation losses in realistic tokamak plasmas, Nucl. Fusion 41 (2001) 665. 
  33. S. Entler, et al., Optimization of the supercritical CO2 power conversion system based on the net efficiency under conditions of the pulse-operated fusion power reactor DEMO, Appl. Therm. Eng. 194 (2021), 116884. 
  34. Iter Physics Expert Group on Confinement and Transport, et al., Chapter 2: plasma confinement and transport, nucl, Fusion 39 (1999) 2175.