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COLORING LINKS BY THE SYMMETRIC GROUP OF

DEGREE THREE

Kazuhiro Ichihara and Eri Matsudo

Abstract. We consider the number of colors for colorings of links by the

symmetric group S3 of degree 3. For knots, such a coloring corresponds to
a Fox 3-coloring, and thus the number of colors must be 1 or 3. However,

for links, there are colorings by S3 with 4 or 5 colors. In this paper, we

show that if a 2-bridge link admits a coloring by S3 with 5 colors, then
the link also admits such a coloring with only 4 colors.

1. Introduction

One of the most well-known invariants of knots and links would be the Fox
3-coloring, originally introduced by R. Fox. For example, it is described in
[1, Chap. VI, Exercises, 6, pp. 92–93]. In this exercise, readers are asked to
show that a knot has a diagram which is 3-colorable if and only if the knot
group can be mapped homomorphically onto the symmetric group of degree
3. In view of this, as a generalization of the Fox 3-coloring, we consider the
colorings of links by the symmetric group of degree 3, which we denote by S3.

Definition. Let D be a diagram of a link. We call a map Γ : {arcs of D} →
S3 \ {e} an S3-coloring on D if it satisfies Γ(x)Γ(y) = Γ(z)Γ(x) (respectively,
Γ(y)Γ(x) = Γ(x)Γ(z)) at a positive (resp. negative) crossing on D, where x
denotes the over arc, y and z the under arcs at the crossing supposing z is the
under arc before passing through the crossing and y is the other.

x y

z z

y x

Figure 1. Crossing conditions for S3-coloring
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The image Γ(a) of an arc a on D by an S3-coloring Γ is said to be a color
on a with respect to Γ.

Note that an S3-coloring on a diagram D of a link L gives a representa-
tion GL → S3 of the link group GL = π1(S

3 − L) of L, and conversely, a
representation of GL to S3 gives an S3-coloring on any diagram D of a link L.

Actually, for knots, such an S3-coloring corresponds to a Fox 3-coloring, as
stated in [1, Chap. VI, Exercises, 6, pp. 92–93]. Thus the number of colors for
such colorings must be 1 or 3. However, for links, there exist colorings by S3

with 4 or 5 colors. See the example below. (See the next section for details.)

Figure 2. A link diagram with an (S3, 4)-coloring

Focusing the number of colors, in this paper, we call an S3-coloring Γ an
(S3, n)-coloring if Γ uses n colors for an integer n ∈ {1, 2, 3, 4, 5}. An (S3, 1)-
coloring is said to be a trivial S3-coloring. A link L is said to be S3-colorable
(resp. (S3, n)-colorable) if L has a diagram which admits a non-trivial S3-
coloring (resp. an (S3, n)-coloring). Then, for links, the following holds.

Proposition 1.1. Any (S3, 4)-colorable link is also (S3, 5)-colorable. Precisely,
if a link L has a diagram which admits an S3-coloring with 4 colors, then L
also has another diagram which admits an S3-coloring with 5 colors.

On the other hand, one can ask if the converse does hold: Is an (S3, 5)-
colorable link always (S3, 4)-colorable? It seems to expect too much naively,
but there are some results on the Fox coloring related to this question. For
example, it is known that if a knot K is Fox 5-colorable, then K has a diagram
which admits a Fox 5-coloring with only 4 colors [6]. Also the second author
[4] and independently M. Zhang, X. Jin and Q. Deng [7] proved that if a link
L is Z-colorable, then L has a diagram which admits a Z-coloring with only 4
colors.

About the question above, in this paper, we obtain the following for 2-bridge
links.

Theorem 1.2. Any (S3, 5)-colorable 2-bridge link L is (S3, 4)-colorable.

In the next section, we describe the local behavior of S3-colorings on links
preparing lemmas. Then, in Section 3, we give a proof of Theorem 1.2. By
Theorem 1.2, all the (S3, 5)-colorable 2-bridge links are (S3, 4)-colorable. Some
of them actually are also (S3, 3)-colorable, but some others are not. In the
last section, among 2-bridge links, we determine the double twist links and the
torus links that are (S3, 4)-colorable but not (S3, 3)-colorable.
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2. Local behavior of S3-colorings

Throughout the paper, we set a presentation of S3 as ⟨σ, τ | σ2 = τ2 =
e, στσ = τστ⟩, where e denotes the identity element of S3. Then, note that
S3 = {e, σ, τ, στσ, στ, τσ} as a set.

In this section, we observe the local behavior of S3-colorings on links, and
prepare some lemmas used in the remaining sections.

Let L be a link with a diagram D. Suppose that D admits a non-trivial
S3-coloring Γ. At a crossing of D, let x denote the over arc, y and z the under
arcs at the crossing supposing y is the under arc before passing through the
crossing and z is the other. See Figure 1. Then the possible colors of the arcs
x, y, z assigned by Γ can be summarized in the following table.

Table 1. Colors on y when the colors on x and z are assigned

Color on x
Color on z

σ τ στσ στ τσ

σ σ στσ τ τσ στ
τ στσ τ σ τσ στ

στσ τ σ στσ τσ στ

στ
στσ

τ
σ

στσ
τ

σ
στ τσ

τσ
τ

στσ
στσ

σ
σ

τ
στ τσ

In the table above,
α

β
means that the color on y is α (resp. β) if the

crossing is positive (resp. negative).

Remark 2.1. Also, from Table 1, we see that any link with at least 2 components
admits an S3-coloring with 2 colors {στ, τσ}. See Figure 3 for example.

Figure 3. An S3-colored link with 2 colors

The next is our fundamental lemma, which we will use implicitly and re-
peatedly. It follows from Table 1.
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Lemma 2.2. Let Γ be an S3-coloring on a diagram D of a link L. Then the
set of the colors on arcs of D corresponding to one component of L are either
a subset of {σ, τ, στσ} or a subset of {στ, τσ}. The set {σ, τ, στσ} or {στ, τσ}
for a component of L is unchanged by modifying the diagram and the coloring
by Reidemeister moves.

Proof. From Table 1, if one of the under arcs at a crossing of a link diagram
is colored by one of {σ, τ, στσ} or one of {στ, τσ} by an S3-coloring, then the
other under arc is also. Thus the first statement holds. One can check the local
behavior of S3-colorings by Reidemeister moves to keep the set of colors on the
related arcs. This implies the second statement. □

We remark that this lemma can be derived from considering the conjugacy
classes of S3 or the conjugate quandle structure of S3.

For a diagram D of a knot, there is a one-to-one correspondence between
a non-trivial Fox 3-coloring on a diagram D and an (S3, 3)-coloring on D as
follows.

Lemma 2.3. (i) For a non-splittable (S3, 3)-colorable link L, the set of colors
for an (S3, 3)-coloring on a diagram of L is {σ, τ, στσ}.

(ii) For a knot K, there is a one-to-one correspondence between a Fox 3-
coloring on a diagram D and an S3-coloring on D of K. Thus a knot K is
S3-colorable if and only if K is Fox 3-colorable. In particular, if a knot is
(S3, n)-colorable, then n = 1 or 3.

Proof. (i) Suppose that a diagram D of a link L admits an (S3, 3)-coloring
Γ. From Lemma 2.2, the set of colors on each component of the link are
either of {σ, τ, στσ} or {στ, τσ}. Let α, β, γ be the three colors used by Γ. If
α ∈ {σ, τ, στσ} and β, γ ∈ {στ, τσ}, then, by Table 1, the arc colored by α
is constantly an over arc, or an under arc at the crossing with the over arc
colored by α, a contradiction. Thus the component with an arc colored by α is
splittable from the other components, implying that L is splittable. Similarly,
the same argument applies for the case α ∈ {στ, τσ} and β, γ ∈ {σ, τ, στσ}.
Thus, if L is non-splittable, the set of 3 colors for Γ is {σ, τ, στσ}.

(ii) Suppose that K is Fox 3-colorable, i.e., K has a diagram D of a knot K
admitting a non-trivial S3-coloring. Then, by Lemma 2.2, the set of colors ap-
pearing are either from {σ, τ, στσ} or from {στ, τσ}. If an arc on D could have
a color from {στ, τσ}, since K has only one component, then, by Table 1, the
coloring uses only one color on D, that is, the coloring is trivial, contradicting
Γ is non-trivial. It follows that the set of colors for the coloring must be from
{σ, τ, στσ}. In this case, seeing Table 1, we note that all the 3 colors appear or
only single color appears at each of the crossings of D. Thus, if the coloring Γ
is non-trivial, then Γ must use 3 colors. By replacing the colors {σ, τ, στσ} to
{0, 1, 2}, we can verify by Table 1 that a Fox 3-coloring on D can be obtained
from Γ. Conversely, one can obtain an S3-coloring from a Fox 3-coloring on
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a knot diagram by setting the colors {0, 1, 2} to the colors {σ, τ, στσ}. See
Table 1 again. □

Remark 2.4. For splittable links, the lemma above does not hold. See Figure 4
for example.

Figure 4. An (S3, 3)-coloring on a splittable 2-component
link with the three colors {σ, στ, τσ}

From Lemma 2.3, a knotK is S3-colorable if and only ifK is Fox 3-colorable.
In particular, if a knot is (S3, n)-colorable, then n = 1 or 3.

On the other hand, if a link L has at least 2 components, then L can be
(S3, n)-colorable with n ≥ 4, as illustrated in Figure 2 for an example.

For such S3-colorings with 4 or 5 colors, we have the following.

Lemma 2.5. Let L be a non-splittable link and D a diagram of L. Suppose
that D admits an (S3, 4)-coloring or an (S3, 5)-coloring, say Γ.

(i) The set of colors of Γ contains at least 2 colors from {σ, τ, στσ} and 2
colors from {στ, τσ}.

(ii) The S3-coloring induced from Γ on a diagram of L obtained by Reide-
meister moves from D has at least 4 colors.

Proof. Suppose that D admits an (S3, 4)-coloring or an (S3, 5)-coloring, say
Γ. Since L has at least two components by Lemma 2.3(ii), one of which is
colored by Γ with {σ, τ, στσ}, and the other is colored by Γ with {στ, τσ} by
Lemma 2.2.

(i) Suppose for a contradiction that Γ uses only one color, say γ, from
{στ, τσ}. Then, by Table 1, the arc colored by γ is constantly an over arc, or
an under arc at the crossing with the over arc colored by γ. This means that
the component is splittable, and it contradicts that L is non-splittable. Thus
the set of colors of Γ contains at least 2 colors from {σ, τ, στσ} and 2 colors
from {στ, τσ}.

(ii) Let Γ′ be the S3-coloring induced from Γ on a diagram of L obtained
by Reidemeister moves from D. Then, by Lemma 2.2, such sets of colors on
the components are unchanged by Reidemeister moves, and so, Γ′ has at least
one color in {σ, τ, στσ} and one color in {στ, τσ}. Moreover, since L is non-
splittable, there exists at least one crossing where the pair of the colors above
appear. Then, by Table 1, there has to be one more color at the crossing.
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Thus Γ′ uses at least 3 colors with one color in {σ, τ, στσ} and one color in
{στ, τσ}. It follows from Lemma 2.3, together with above, the coloring Γ′ is
not an (S3, 3)-coloring. Therefore, if D admits an (S3, 4)-coloring or an (S3, 5)-
coloring, then any S3-coloring on a diagram of L obtained by Reidemeister
moves from D with the coloring has at least 4 colors. □

Now we give a proof of Proposition 1.1.

Proof of Proposition 1.1. Let L be an (S3, 4)-colorable link and D a diagram
of L with an (S3, 4)-coloring Γ.

If L is non-splittable, then there exist 2 colors in {σ, τ, στσ} and 2 colors in
{στ, τσ} on D from Lemma 2.5(i). Let α ∈ {σ, τ, στσ} be the color which Γ
does not use. Consider an arc on D colored by β, γ ∈ {σ, τ, στσ} with β, γ ̸= α.
Then one can deform D and Γ to a diagram with a coloring so that α appears
by using Reidemeister move II repeatedly, as illustrated in Figure 5. Then the
coloring so obtained uses five colors by Lemma 2.5(ii).

Figure 5. Making τ appear from {σ, στσ, στ, τσ}

When L is splittable, we also have to consider the case that there exists 3
colors in {σ, τ, στσ} and 1 color in {στ, τσ} on D. In this case, let α ∈ {στ, τσ}
be a color which Γ does not use. On the other hand, D contains an arc colored
by β ∈ {στ, τσ} with β ̸= α. Then one can deform D with the coloring to
a diagram with a coloring with α by using Reidemeister move II repeatedly,
as illustrated in Figure 6. Then the coloring so obtained uses five colors by
Lemma 2.5(ii).

Figure 6. Making τσ appear from {σ, τ, στσ, στ}
□
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3. Proof of Theorem 1.2

In this section, we give a proof of Theorem 1.2. Recall that it is known
that a 2-bridge link always has a Conway diagram C(2a1, 2b1, . . . , 2bm, 2am+1)
depicted in Figure 7. See [3, Chapter 2] about the 2-bridge links and the
Conway diagrams (called ”Conway’s normal form” in the book) for example.
In the following, we always assume that ai ̸= 0 and bj ̸= 0 and all the 2-bridge
links are oriented as illustrated in Figure 7.

Figure 7. A Conway diagram C(2a1, 2b1, . . . , 2bm, 2am+1)

We first show the following lemma.

Lemma 3.1. The Conway diagram C(2a1, 2b1, 2a2, 2b2, . . . , 2bm, 2am+1) of a

2-bridge link L admits an (S3, 4)-coloring if
∑m+1

i=1 |ai| ≡ 0 (mod 2) holds for
the diagram.

Note that the last congruent equation is equivalent to that the linking num-
ber of the two components of a two-bridge link is even.

Proof of Lemma 3.1. We try to construct an (S3, 4)-coloring on a Conway di-
agram C(2a1, 2b1, 2a2, 2b2, . . . , 2bm, 2am+1) from the left end of the diagram.

We fix colors on arcs x, y in Figure 7 as σ and στ respectively. Then, let
us try to make a coloring by setting the color on the arc next to the right of a
colored arc by using Table 1. Repeatedly perform this procedure from left to
right.

First we see the colors in the twist regions with 2ai crossings (1 ≤ i ≤ m+1).
Since 2ai is even, pairs of colors before and after 2ai crossings are the same or
another color pair. Precisely, if ai is even, the pairs of colors before and after
2ai crossings are coincide. If ai is odd, the pairs of colors before and after 2ai
crossings are distinct, but in a fixed pattern. For example, if a pair of colors
{σ, στ} appears before the twist, then the pairs of colors on the parallel arcs
during the twist are {σ, στ} or {τ, τσ} alternately as illustrated in Figure 8. In
particular, during the twists, only 4 colors can appear.

Figure 8. Colors in the twist with 2ai crossings
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Next we see the colors in the twist regions with 2bj crossings (1 ≤ j ≤ m).
On the arcs in the twist with 2bj crossings, just two colors στ, τσ appear.
Moreover, the colors on the parallel arcs before and after the twisting are the
same. See Figure 9.

Figure 9. Colors in the twist with 2bi crossings

From this procedure, checking the right-end of the diagram, we can obtain
an S3-coloring on the diagram if and only if

∑m+1
i=1 |ai| ≡ 0 (mod 2) holds. By

the construction, the coloring so obtained uses only 4 colors. □

Proof of Theorem 1.2. Let L be an (S3, 5)-colorable 2-bridge link. By Reide-
meister moves, we deform a diagram D of L with an (S3, 5)-coloring to a Con-
way diagram DC = C(2a1, 2b1, . . . , 2bm, 2am+1) as shown in Figure 7 with the
induced S3-coloring Γ. By Lemma 2.5(i) and (ii), the coloring Γ uses at least 2
colors from {σ, τ, στσ} and 2 colors from {στ, τσ}. Moreover, by Lemma 2.2,
the arcs contained in one component have the colors either from {σ, τ, στσ} or
from {στ, τσ}.

Now we consider the colors on the arcs x and y in Figure 7 by Γ.
When Γ(x) ∈ {σ, τ, στσ} and Γ(y) ∈ {στ, τσ}, then, by retaking the colors

if necessary, the coloring is completely the same as that constructed in the
proof of Lemma 3.1. That is, Γ is an (S3, 4)-coloring on the diagram, and∑m+1

i=1 |ai| ≡ 0 (mod 2) must hold.
Consider the case that Γ(x) ∈ {στ, τσ} and Γ(y) ∈ {σ, τ, στσ}. Then one

can deform the diagram and the coloring to Γ′ so that Γ′(x) ∈ {σ, τ, στσ} and
Γ′(y) ∈ {στ, τσ} by Reidemeister moves. Precisely, it is achieved by rotating
the interior part of the thin line inside-out, keeping the exterior part of the line
fixed as illustrated in Figure 10. Also see [5, Chapter 9].

After such modifications, in the same way as the proof of Lemma 3.1, we
see that the condition Σm+1

i=1 |ai| ≡ 0 (mod 2) have to be satisfied, and Γ′ is an
(S3, 4)-coloring on the diagram.

It concludes that if a 2-bridge link L is (S3, 5)-colorable, then L has a

Conway diagram C(2a1, 2b1, 2a2, 2b2, . . . , 2bm, 2am+1) satisfying
∑m+1

i=1 |ai| ≡ 0
(mod 2), and the diagram admits an (S3, 4)-coloring, i.e., the link L is (S3, 4)-
colorable. This completes the proof of Theorem 1.2. □

4. Examples

From Theorem 1.2, any (S3, 5)-colorable 2-bridge link is (S3, 4)-colorable.
Among such (S3, 4)-colorable links, there exists some of the links which is
also (S3, 3)-colorable and the others are not. In this section, we collect some
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Figure 10. Reidemeister moves to Γ′(x) ∈ {σ, τ, στσ}

examples of S3-colorings for 2-bridge links, and in particular, consider double
twist links. One of the simplest 2-bridge links would be 2-bridge torus links,
that are the torus links with only two strands.

Example 4.1 (The torus link T (2, q)). By Theorem 1.2, the torus link T (2, q)
is (S3, 4)-colorable if and only if q ≡ 0 (mod 4). The next figure depicts a torus
link with (S3, 4)-coloring which is not (S3, 3)-colorable.

Figure 11. Torus link T (2, 4) with an (S3, 4)-coloring

In fact, by using Table 1, one can see that the standard torus diagram of
T (2, q) (Figure 11) is (S3, 4)-colorable if and only q ≡ 0 (mod 4) and T (2, q) is
(S3, 3)-colorable if and only if q ≡ 0 (mod 3). See Figures 8 and 12.

Also, by [2], the determinant of T (2, q) is q, and so, T (2, q) is Fox 3-colorable,
equivalently, is (S3, 3)-colorable if and only if q ̸≡ 0 (mod 3).

For example, the torus link T (2, 12) is (S3, n)-colorable for n = 3, 4, 5.

Next, we consider double-twist links, which are the links admitting the dia-
grams shown in Figure 14.

An example of the double twist link with (S3, 4)-coloring which is not (S3, 3)-
colorable is depicted in Figure 15.

Actually, for double twist links, we have the following.
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Figure 12. Twists with {σ, τ, στσ}

Figure 13. S3-colorings for T (2, 12)

Proposition 4.2. A double twist link J(k, l) depicted in Figure 14 is (S3, 4)-
colorable if and only if kl ≡ 3 (mod 4), and is (S3, 3)-colorable if and only if
kl ≡ 2 (mod 3).

Proof. To see which J(k, l) is (S3, 4)-colorable, we need to consider Conway
diagrams to apply Theorem 1.2, but here, we directly consider the diagram D
of J(k, l) shown in Figure 14.

First we show that D is (S3, 4)-colorable if kl ≡ 3 (mod 4). We set colors
Γ(x), Γ(y) of arcs x, y on Figure 14 as Γ(x) = σ,Γ(y) = στ . Then the pair
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Figure 14. A diagram of a double twist link J(k, l)

Figure 15. Double twist link J(3, 5) with an (S3, 4)-coloring

of colors (Γ(z),Γ(w)) on arcs (z, w) is fixed as (τσ, σ) with k ≡ 1 (mod 4),
or (στ, τ) with k ≡ 3 (mod 4) to make a coloring on D by Table 1. For the
case of k ≡ 1 (mod 4), l ≡ 3 (mod 4) also holds, and so D is S3-colorable as
(Γ(x),Γ(y),Γ(z),Γ(w)) = (σ, στ, τσ, σ). See Figure 16. Note that στσ does
not appear during the twists, that is, the coloring is an (S3, 4)-coloring.

Figure 16. A diagram of a double twist link J(k, l)

In the same way, in the case of k ≡ 3 (mod 4), D is shown to be (S3, 4)-
colorable.

Conversely, suppose that J(k, l) is (S3, 4)-colorable. In the same argument
as the proof of Theorem 1.2, the diagram D of J(k, l) admits a S3-coloring such
that the arcs contained in one component are all colored by either of {σ, τ, στσ}
or {στ, τσ}. Then, as above, by seeing the colors on the arcs from the left end,
one can check that the condition kl ≡ 3 (mod 4) is necessary.

For (S3, 3)-colorability, again, by [2], the determinant of J(k, l) is shown to
be 1 + kl, and so, J(k, l) is Fox 3-colorable, equivalently, is (S3, 3)-colorable if
and only if kl ≡ 2 (mod 3). □

Acknowledgements. The authors would like to thank to Masaaki Suzuki
for useful discussions. Also they thank to anonymous referee of the previous
submission.



924 K. ICHIHARA AND E. MATSUDO

References

[1] R. H. Crowell and R. H. Fox, Introduction to Knot Theory, reprint of the 1963 original,

Graduate Texts in Mathematics, No. 57, Springer, New York, 1977.

[2] L. H. Kauffman and P. M. Lopes, Determinants of rational knots, Discrete Math. Theor.
Comput. Sci. 11 (2009), no. 2, 111–122.

[3] A. Kawauchi, A Survey of Knot Theory, translated and revised from the 1990 Japanese

original by the author, Birkhäuser Verlag, Basel, 1996.
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