DOI QR코드

DOI QR Code

CONTINUOUS WELCH BOUNDS WITH APPLICATIONS

  • Received : 2022.07.05
  • Accepted : 2023.05.09
  • Published : 2023.07.31

Abstract

Let (Ω, µ) be a measure space and {τα}α∈Ω be a normalized continuous Bessel family for a finite dimensional Hilbert space 𝓗 of dimension d. If the diagonal ∆ := {(α, α) : α ∈ Ω} is measurable in the measure space Ω × Ω, then we show that $$\sup\limits_{{\alpha},{\beta}{\in}{\Omega},{\alpha}{\neq}{\beta}}\,{\mid}{\langle}{\tau}_{\alpha},\,{\tau}_{\beta}{\rangle}{\mid}^{2m}\,{\geq}\,{\frac{1}{({\mu}{\times}{\mu})(({\Omega}{\times}{\Omega}{\backslash}{\Delta})}\;\[\frac{{\mu}({\Omega})^2}{\({d+m-1 \atop m}\)}-({\mu}{\times}{\mu})({\Delta})\],\;{\forall}m{\in}{\mathbb{N}}.$$ This improves 48 years old celebrated result of Welch [41]. We introduce the notions of continuous cross correlation and frame potential of Bessel family and give applications of continuous Welch bounds to these concepts. We also introduce the notion of continuous Grassmannian frames.

Keywords

Acknowledgement

This work was financially supported by J. C. Bose Fellowship of Prof. B. V. Rajarama Bhat.

References

  1. S. T. Ali, J.-P. Antoine, and J.-P. Gazeau, Continuous frames in Hilbert space, Ann. Physics 222 (1993), no. 1, 1-37. https://doi.org/10.1006/aphy.1993.1016 
  2. M. Appleby, I. Bengtsson, S. Flammia, and D. Goyeneche, Tight frames, Hadamard matrices and Zauner's conjecture, J. Phys. A 52 (2019), no. 29, 295301, 26 pp. https://doi.org/10.1088/1751-8121/ab25ad 
  3. J. J. Benedetto and M. Fickus, Finite normalized tight frames, Adv. Comput. Math. 18 (2003), no. 2-4, 357-385. https://doi.org/10.1023/A:1021323312367 
  4. J. J. Benedetto and J. D. Kolesar, Geometric properties of grassmannian frames for ℝ2 and ℝ3, EURASIP J. Adv. Signal Process (2006), no. 049850. 
  5. C. Bocci and L. Chiantini, An Introduction to Algebraic Statistics with Tensors, Unitext, 118, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-24624-2 
  6. B. G. Bodmann and J. Haas, Frame potentials and the geometry of frames, J. Fourier Anal. Appl. 21 (2015), no. 6, 1344-1383. https://doi.org/10.1007/s00041-015-9408-z 
  7. B. Bukh and C. Cox, Nearly orthogonal vectors and small antipodal spherical codes, Israel J. Math. 238 (2020), no. 1, 359-388. https://doi.org/10.1007/s11856-020-2027-7 
  8. P. G. Casazza, M. Fickus, J. Kovacevic, M. T. Leon, and J. C. Tremain, A physical interpretation of tight frames, in Harmonic analysis and applications, 51-76, Appl. Numer. Harmon. Anal, Birkhauser Boston, Boston, MA, 2006. https://doi.org/10.1007/0-8176-4504-7_4 
  9. O. Christensen, S. Datta, and R. Y. Kim, Equiangular frames and generalizations of the Welch bound to dual pairs of frames, Linear Multilinear Algebra 68 (2020), no. 12, 2495-2505. https://doi.org/10.1080/03081087.2019.1586825 
  10. P. Comon, G. Golub, L. Lim, and B. Mourrain, Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl. 30 (2008), no. 3, 1254-1279. https://doi.org/10.1137/060661569 
  11. J. H. Conway, R. H. Hardin, and N. J. A. Sloane, Packing lines, planes, etc.: packings in Grassmannian spaces, Experiment. Math. 5 (1996), no. 2, 139-159. http://projecteuclid.org/euclid.em/1047565645  1047565645
  12. S. Datta, Welch bounds for cross correlation of subspaces and generalizations, Linear Multilinear Algebra 64 (2016), no. 8, 1484-1497. https://doi.org/10.1080/03081087.2015.1091437 
  13. S. Datta, S. D. Howard, and D. Cochran, Geometry of the Welch bounds, Linear Algebra Appl. 437 (2012), no. 10, 2455-2470. https://doi.org/10.1016/j.laa.2012.05.036 
  14. C. S. Ding and T. Feng, Codebooks from almost difference sets, Des. Codes Cryptogr. 46 (2008), no. 1, 113-126. https://doi.org/10.1007/s10623-007-9140-z 
  15. J. Dravecky, Spaces with measurable diagonal, Mat. Casopis Sloven. Akad. Vied 25 (1975), no. 1, 3-9. 
  16. M. Ehler and K. A. Okoudjou, Minimization of the probabilistic p-frame potential, J. Statist. Plann. Inference 142 (2012), no. 3, 645-659. https://doi.org/10.1016/j.jspi.2011.09.001 
  17. Y. C. Eldar and G. Kutyniok, editors, Compressed Sensing: Theory and Application, Cambridge Univ. Press, Cambridge, 2012. https://doi.org/10.1017/CBO9780511794308 
  18. S. Foucart and H. Rauhut, A mathematical introduction to compressive sensing, Applied and Numerical Harmonic Analysis, Birkhauser/Springer, New York, 2013. https://doi.org/10.1007/978-0-8176-4948-7 
  19. J. I. Haas, N. Hammen, and D. G. Mixon, The Levenstein bound for packings in projective spaces, Proceedings, volume 10394, Wavelets and Sparsity XVII, SPIE Optical Engineering+Applications, San Diego, California, United States of America, 2017. 
  20. M. Haikin, R. Zamir, and M. Gavish, Frame moments and Welch bound with erasures, in 2018 IEEE International Symposium on Information Theory (ISIT), (2018), 2057-2061. 
  21. D. G. Han, K. Kornelson, D. Larson, and E. Weber, Frames for undergraduates, Student Mathematical Library, 40, Amer. Math. Soc., Providence, RI, 2007. https://doi.org/10.1090/stml/040 
  22. J. Jasper, E. J. King, and D. G. Mixon, Game of Sloanes: best known packings in complex projective space, Proc. SPIE 11138, Wavelets and Sparsity XVIII, 2019. 
  23. G. R. Kaiser, A friendly guide to wavelets, reprint of the 1994 edition, Modern Birkhauser Classics, Birkhauser/Springer, New York, 2011. https://doi.org/10.1007/978-0-8176-8111-1 
  24. J. Kovacevic and A. Chebira, Life beyond bases: The advent of frames, part II, IEEE Signal Processing Magazine 24 (2005), no. 5, 115-125.  https://doi.org/10.1109/MSP.2007.904809
  25. J. Kovacevic and A. Chebira, Life beyond bases: The advent of frames, part I, IEEE Signal Processing Magazine 24 (2007), no. 4, 86-104.  https://doi.org/10.1109/MSP.2007.4286567
  26. K. K. Mukkavilli, A. Sabharwal, E. Erkip, and B. Aazhang, On beamforming with finite rate feedback in multiple-antenna systems, IEEE Trans. Inform. Theory 49 (2003), no. 10, 2562-2579. https://doi.org/10.1109/TIT.2003.817433 
  27. A. Rahimi, B. Daraby, and Z. Darvishi, Construction of continuous frames in Hilbert spaces, Azerb. J. Math. 7 (2017), no. 1, 49-58. 
  28. R. A. Rankin, The closest packing of spherical caps in n dimensions, Proc. Glasgow Math. Assoc. 2 (1955), 139-144.  https://doi.org/10.1017/S2040618500033219
  29. C. Rose, S. Ulukus, and R. D. Yates, Wireless systems and interference avoidance, EEE Transactions on Wireless Communications 1 (2002), 415-428.  https://doi.org/10.1109/TWC.2002.800540
  30. D. V. Sarwate, Bounds on crosscorrelation and autocorrelation of sequences, IEEE Trans. Inform. Theory 25 (1979), no. 6, 720-724. https://doi.org/10.1109/TIT.1979.1056116 
  31. A. J. Scott, Tight informationally complete quantum measurements, J. Phys. A 39 (2006), no. 43, 13507-13530. https://doi.org/10.1088/0305-4470/39/43/009 
  32. M. Soltanalian, M. M. Naghsh, and P. Stoica, On meeting the peak correlation bounds, IEEE Trans. Signal Process. 62 (2014), no. 5, 1210-1220. https://doi.org/10.1109/TSP.2014.2300064 
  33. T. Strohmer and R. W. Heath Jr., Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal. 14 (2003), no. 3, 257-275. https://doi.org/10.1016/S1063-5203(03)00023-X 
  34. M. Sustik, J. A. Tropp, I. S. Dhillon, and J. Heath, On the existence of equiangular tight frames, Linear Algebra Appl. 426 (2007), no. 2-3, 619-635. https://doi.org/10.1016/j.laa.2007.05.043 
  35. M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (1984), no. 307, ix+224 pp. https://doi.org/10.1090/memo/0307 
  36. Y. S. Tan, Energy optimization for distributions on the sphere and improvement to the Welch bounds, Electron. Commun. Probab. 22 (2017), Paper No. 43, 12 pp. https://doi.org/10.1214/17-ECP73 
  37. J. A. Tropp, I. S. Dhillon, J. Heath, and T. Strohmer, Designing structured tight frames via an alternating projection method, IEEE Trans. Inform. Theory 51 (2005), no. 1, 188-209. https://doi.org/10.1109/TIT.2004.839492 
  38. S. F. Waldron, Generalized Welch bound equality sequences are tight frames, IEEE Trans. Inform. Theory 49 (2003), no. 9, 2307-2309. https://doi.org/10.1109/TIT.2003.815788 
  39. S. F. Waldron, A sharpening of the Welch bounds and the existence of real and complex spherical t-designs, IEEE Trans. Inform. Theory 63 (2017), no. 11, 6849-6857. https://doi.org/10.1109/TIT.2017.2696020 
  40. S. F. Waldron, An introduction to finite tight frames, Applied and Numerical Harmonic Analysis, Birkhauser/Springer, New York, 2018. https://doi.org/10.1007/978-0-8176-4815-2 
  41. L. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Transactions on Information Theory 20 (1974), no. 3, 397-399.  https://doi.org/10.1109/TIT.1974.1055219
  42. P. Xia, S. Zhou, and G. B. Giannakis, Achieving the Welch bound with difference sets, IEEE Trans. Inform. Theory 51 (2005), no. 5, 1900-1907. https://doi.org/10.1109/TIT.2005.846411 
  43. P. Xia, S. Zhou, and G. B. Giannakis, Correction to: "Achieving the Welch bound with difference sets [IEEE Trans. Inform. Theory 51 (2005), no. 5, 1900-1907], IEEE Trans. Inform. Theory 52 (2006), no. 7, 3359.