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S-COHERENT PROPERTY IN TRIVIAL EXTENSION AND

IN AMALGAMATED DUPLICATION

Mohamed Chhiti and Salah Eddine Mahdou

Abstract. Bennis and El Hajoui have defined a (commutative unital)
ring R to be S-coherent if each finitely generated ideal of R is a S-finitely

presented R-module. Any coherent ring is an S-coherent ring. Several

examples of S-coherent rings that are not coherent rings are obtained
as byproducts of our study of the transfer of the S-coherent property to

trivial ring extensions and amalgamated duplications.

1. Introduction

Throughout this paper, all rings are assumed to be commutative with non-
zero identity and all modules are nonzero unital. Let R denote such a ring and
S denote such a multiplicatively closed subset of R such that 0 /∈ S. Reg(R)
denotes the set of regular elements of the ring R and Q(R) := RReg(R), the
total quotient ring of R. For a nonnegative integer n, an R-module E is called
n-presented if there is an exact sequence of R-modules:

Fn → Fn−1 → · · · → F1 → F0 → E → 0,

where each Fi is a finitely generated free R-module. In particular, 0-presented
and 1-presented R-modules are, respectively, finitely generated and finitely
presented R-modules. Recall that R is an n-coherent ring if each n-presented
R-module is (n+1)-presented. Thus, the 1-coherent rings are just the coherent
rings and an n-coherent ring is (n+1)-coherent for any positive integer n. For
instance, any coherent ring is 2-coherent and the converse is false (for example
Z ∝ Q is a 2-coherent ring which is not coherent by [17, Theorem 3.1]).

A ring R is coherent if every finitely generated ideal of R is finitely pre-
sented; equivalently, if (0 : a) and I ∩ J are finitely generated for every a ∈ R
and any two finitely generated ideals I and J of R. Examples of coherent rings
are Noetherian rings, Boolean algebras, von Neumann regular rings, valuation
domains, and Prüfer domains/semihereditary rings. The concept of coherence
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first sprang up from the study of coherent sheaves in algebraic geometry, and
then developed, under the influence of Noetherian ring theory and homology,
towards a full-fledged topic in algebra. During the past 30 years, several (com-
mutative) coherent-like notions grew out of coherence such as finite conductor,
quasi-coherent, v-coherent, and n-coherent. See for instance [1, 5, 13,15,17].

In [2], Anderson and Dumitrescu introduced the concept of S-finite modules,
where S is a multiplicatively subset as follows: an R-module M is called an
S-finite module if there exist a finitely generated R-submodule N of M and
s ∈ S such that sM ⊆ N. Also, they introduced the concept of S-Noetherian
rings as follows: a ring R is called S-Noetherian if every ideal of R is S-finite.
Recently, in [5], Bennis and El Hajoui investigated the S-versions of finitely
presented modules and coherent modules which are called, respectively, S-
finitely presented modules and S-coherent modules. An R-module M is called
an S-finitely presented module for some multiplicatively closed subset S of
R if there exists an exact sequence of R-modules 0 → K → F → M → 0,
where F is a finitely generated free R-module and K is an S-finite R-module.
Moreover, an R-module M is said to be S-coherent if it is finitely generated and
every finitely generated submodule of M is S-finitely presented. They showed
that the S-coherent rings have a characterization similar to the classical one
given by Chase for coherent rings (see [5, Theorem 3.8]). Any coherent ring is
S-coherent and any S-Noetherian ring is S-coherent. See for instance [2, 5].

Some of our results use the R ∝ M construction. Let R be a ring and M be
an R-module. Then R ∝ M , the trivial (ring) extension of R by M , is the ring
whose additive structure is that of the external direct sum R ⊕M and whose
multiplication is defined by (r1,m1)(r2,m2) := (r1r2, r1m2 + r2m1) for all
r1, r2 ∈ R and all m1,m2 ∈ M . The basic properties of trivial ring extensions
are summarized in the books [13,14]. Mainly, trivial ring extensions have been
useful for solving many open problems and conjectures in both commutative
and non-commutative ring theory. See for instance [3, 4, 10,11,13,14,16–18].

Let A be a ring and I an ideal of A. The following ring construction called
the amalgamated duplication of A along I was introduced and investigated by
D’Anna in [7] with the aim of applying it to curve singularities (over algebraic
closed fields) where he proved that the amalgamated duplication of an algebroid
curve along a regular canonical ideal yields a Gorenstein algebroid curve [7,
Theorem 14 and Corollary 17]. It is the subring A ▷◁ I of A×A given by

A ▷◁ I = {(a, a+ i) | a ∈ A and i ∈ I}.

This extension has been studied, in the general case, and from the different
point of view of pullbacks, by D’anna and Fontana [9]. One main difference of
this construction, with respect to the idealization, is that the ring A ▷◁ I can
be reduced (and it is always reduced if A is an integral domain). If J is an
ideal of A, then J ▷◁ I := {(j, j + i) | j ∈ J, i ∈ I} is an ideal of A ▷◁ I with
A▷◁I
J▷◁I

∼= A
J . Under the natural injection A ↪→ A ▷◁ I defined by i(a) = (a, a),
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we identify A with its respective image in A ▷◁ I; and the natural surjection
A ▷◁ I ↠ A yields the isomorphism A▷◁I

(0)▷◁I
∼= A. See for instance [6–9,12].

This paper investigates S-coherent condition that a trivial extension R :=
A ∝ E might inherit from the ring A for some classes of modules E. Also,
we study the amalgamated duplication of a ring along an ideal to inherit the
S-coherence. Our results generate new families of examples of non-coherent
S-coherent rings.

2. S-coherence property in trivial ring extension

Recall that a ring R is called S-coherent if every finitely generated ideal
of R is S-finitely presented. Remark that if R is S-coherent, then S−1R is a
coherent ring. Also, any coherent ring is S-coherent for every multiplicative
set.

First, we give an example of non-coherent S-coherent rings.

Example 2.1. Let R be any non-coherent domain and set S := R− {0} be a
multiplicative set of R. Then R is S-Noetherian. In particular, R is S-coherent.

Proof. Let I be a proper ideal of R and let s ∈ I \ {0}. Hence, sI ⊆ Rs ⊆ I
and so I is S-finite sine Rs is a finitely generated ideal of R, as desired. □

Let R := A ∝ E be the trivial ring extension of a ring A by an A-module E.
Remark that if S is a multiplicative set of R, then S0 = {a ∈ A | (a, e) ∈ S for
some e ∈ E} is a multiplicative set of A. Conversely, if S0 is a multiplicative
set of A, then S := S0 ∝ N is a multiplicative set of R for every submodule N
of E such that S0N ⊆ N . In particular, S0 ∝ 0 and S0 ∝ E are multiplicative
sets of R.

Now, we explore the transfer of S-coherent property to the trivial ring ex-
tension of a domain A by a K-vector space E, where K is a quotient field of
A.

Theorem 2.2. Let A be an integral domain which is not a field, K = qf(A),
E be a K-vector space, and R := A ∝ E be the trivial ring extension of A by
E. Then R is never S-coherent for every multiplicative set S of R.

Proof. Let J = R(0, f), where f ∈ E \ {0}, and consider the exact sequence of
R-modules:

0 → Ker(u) → R
u→ J → 0,

where u(a, e) = (a, e)(0, f) = (0, af). Hence, Ker(u) = 0 ∝ E. We claim that
Ker(u)(= 0 ∝ E) is not S-finite. Deny. Then there exists a finitely generated

ideal L :=
∑i=n

i=1 R(ai, ei) for some positive integer n and (ai, ei) ∈ L, and
(s, e′) ∈ S, where s ̸= 0, such that

(s, e′)(0 ∝ E) ⊆ L ⊆ 0 ∝ E.

Hence, ai = 0 for every i = 1, . . . , n since L ⊆ 0 ∝ E. On the other hand,
(s, e′)(0 ∝ E) = 0 ∝ sE = 0 ∝ E since sE = E for every s ∈ K\{0}. Therefore,
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0 ∝ E = L =
∑i=n

i=1 R(0, ei) = 0 ∝
∑i=n

i=1 Aei and so E =
∑i=n

i=1 Aei. Hence, K
is a finitely generated A-module and so K = A, a desired contradiction since
A is not a field. Then R := A ∝ E is not S-coherent. □

Using Theorem 2.2 in the case when S consists of unit elements, we regain
the result [17, Theorem 2.1(1)].

Corollary 2.3. Let A be an integral domain which is not a field, K = qf(A),
E be a K-vector space, and R := A ∝ E be the trivial ring extension of A by
E. Then R is never coherent.

Next, we explore a different context, namely, the trivial ring extension of a
local ring (A,M) by an A-module E such that ME = 0. If a multiplicative
set S of R consists of unit elements of R, S ⊆ U(R), then R is S-coherent if
and only if R is coherent and it is studied by S. Kabbaj and N. Mahdou in
[17, Theorem 2.6(2)]. So, we may assume that S does not consist only of unit
elements of R.

Theorem 2.4. Let (A,M) be a local ring, E an A-module with ME = 0 and
let R := A ∝ E be the trivial ring extension of A by E. Let S be a multiplicative
set of R and set S0 = {a ∈ A | (a, e) ∈ S for some e ∈ E}. Then

(1) If R is S-coherent, then A is S0-coherent.
(2) Assume that S ⊈ U(R), that is, there exists (s0, e) ∈ S such that

s0 ∈ M \ 0. Then R is S-coherent if and only if A is S0-coherent.

Proof. One may easily verify that R is local with maximal ideal M ∝ E and
that each element of R is either a unit or a zero divisor.

(1) Assume that R is S-coherent and let I =
∑i=n

i=1 Aai, where ai ∈ M and

set J :=
∑i=n

i=1 R(ai, 0). Consider the exact sequence of R-modules:

0 → Ker(u) → Rn = An ∝ En u→ J → 0,

where u((bi, ei)i=1,...,n) =
∑i=n

i=1 (bi, ei)(ai, 0) = (
∑i=n

i=1 aibi, 0) since ai ∈ M
for each i = 1, . . . , n. On the other hand, consider the exact sequence of A-
modules:

0 → Ker(v) → An v→ I → 0,

where u((bi)i=1,...,n) =
∑i=n

i=1 aibi. Then, Ker(u) = Ker(v) ∝ En. But J is
S-finitely presented since R is S-coherent, so Ker(u) is an S-finite R-module.

Then there exists a finitely generated ideal L :=
∑i=m

i=1 R(xi, ei) ⊆ Ker(u) for
some (xi, ei) ∈ L and a positive integer m such that

(s, e)Ker(u) ⊆ L ⊆ Ker(u).

Hence, for L0 =
∑i=n

i=1 Axi, we have

sKer(v) ⊆ L0 ⊆ Ker(v)

and so Ker(v) is S0-finite, as desired.
Hence, A is S0-coherent.
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(2) By (1) it remains to show that if A is S0-coherent, then R is S-coherent,
where S ⊈ U(R).

Let J :=
∑i=n

i=1 R(ai, ei) be a finitely generated ideal ofR, where (ai, ei)i=1,...,n

is a minimal generating set of J , ai ∈ M and ei ∈ E. Consider the exact se-
quence of R-modules:

0 → Ker(u) → Rn u→ J → 0,

where u((bi, fi)i=1,...,n) =
∑i=n

i=1 (ai, ei)(bi, fi) = (
∑i=n

i=1 aibi,
∑i=n

i=1 biei) since
ai ∈ M for each i = 1, . . . , n. Further, the minimality of (ai, ei)i=1,...,n yields

Ker(u) = {(bi, fi)i=1,...,n ∈ Rn |
∑i=n

i=1 aibi = 0}.
Set I :=

∑i=n
i=1 Aai and consider the surjective homomorphism v defined

above. Then Ker(v) is an S0-finite A-module since A is S0-coherent. Hence,

there exists a finitely generated A-module L0 :=
∑i=m

i=1 Axi for some xi ∈ L0

and a positive integer m, and s ∈ S0 such that

sKer(v) ⊆ L0 ⊆ Ker(v).

We may assume that s is not invertible since if s0 ∈ S0 is not invertible (since
S ⊈ U(R) and so S0 ⊈ U(A)), then we have ss0Ker(v) ⊆ sKer(v) ⊆ L0 ⊆
Ker(v) and so ss0 is not invertible and we may replace s by ss0.

Set G0 :=
∑i=m

i=1 R(xi, 0) = L0 ∝ 0 (since L0 =
∑i=m

i=1 Axi ⊆ Mm). Hence,
G0 ⊆ Ker(u) and let e ∈ E such that (s, e) ∈ S. Then, (s, e)Ker(u) =
(s, e)(Ker(v) ∝ En) = sKer(v) ∝ 0 (sinceKer(v) ⊆ Mn, s ∈ M andME = 0)
⊆ L0 ∝ 0 = G0.

Therefore, Ker(u) is S-finite and so R is S-coherent. □

Now, we can construct non-coherent S-coherent rings.

Example 2.5. Let (A,M) be a local coherent domain which is not a field, E
be an (A/M)-vector space with infinite rank, R := A ∝ E be the trivial ring
extension of A by E, and let S be any multiplicative set of R. Then:

(1) R is S-coherent by Theorem 2.4 since A is S0-coherent (since A is
coherent).

(2) R is not coherent by [17, Theorem 2.6(2)] since E is an (A/M)-vector
space with infinite rank.

Example 2.6. Let (A,M) be a non-coherent local domain which is not a field,
E be an (A/M)-vector space, R := A ∝ E be the trivial ring extension of A
by E, and let S = S0 ∝ {0}, where S0 = A− {0}. Then

(1) R is S-coherent by Theorem 2.4 since A is S0-coherent (by Example
2.1).

(2) R is not coherent by [17, Theorem 2.6(2)] since A is not coherent.

Recall that any coherent ring is 2-coherent and the converse is false (for
example Z ∝ Q is a 2-coherent ring which is not coherent by [17, Theorem
3.1]) (see Figure 1). Hence, we have:
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Figure 1.

The notions of S-coherent and 2-coherent in Figure 1 are not comparable as
the following two examples show:

Example 2.7. Let (A,M) be a local coherent domain such that M is not
finitely generated (for instance, take A = K[[X1, . . . , Xn, ...]] be the power
series ring with countably infinite indeterminates {Xi, i ∈ N−{0}} over a field
K), E = A/M , and R := A ∝ E be a trivial ring extension of A by E. Then

(1) R is S-coherent for every multiplicative set S such that S ⊈ U(R)(=
(A−M) ∝ E).

(2) R is not 2-coherent.

Proof. (1) R is S-coherent by Theorem 2.4 since A is coherent and S ⊈ U(R).
(2) Let J = R(m, 0), where m ∈ M − {0}, and consider the exact sequence

of R-modules:
0 → Ker(u) → R

u→ J → 0,

where u(a, e) = (a, e)(m, 0) = (am, 0). Clearly, Ker(u) = 0 ∝ A/M = R(0, 1̄).
Now, consider the exact sequence of R-modules:

0 → Ker(v) → R
v→ Ker(u) → 0,

where v(a, e) = (a, e)(0, 1̄) = (0, ā). It is clear that Ker(v) = M ∝ E which is
not a finitely generated ideal of R since M is not a finitely generated ideal of
A. Therefore, by the exact sequence of R-modules:

0 → J → R → R/J → 0

it is clear that R/J is a 2-presented R-module which is not 3-presented. Hence,
R is not 2-coherent. □

Example 2.8. Let A be a coherent integral domain which is not a field, K =
qf(A), R := A ∝ K be the trivial ring extension of A by K, and let S be any
multiplicative set of R. Then

(1) R is 2-coherent by [17, Theorem 3.1(2)] since A is coherent.
(2) R is not S-coherent by Theorem 2.2.

3. Amalgamation duplication of S-coherent property

Let A be a ring, I be an ideal of A, A ▷◁ I be the amalgamation duplication
of A along I, S be a multiplicative set of A ▷◁ I such that S0 = {s ∈ A | (s, s+
i) ∈ S for some i ∈ I}. For instance, S = {(s, s) ∈ A ▷◁ I | s ∈ S0} and
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S = S ▷◁ I = {(s, s + i) | i ∈ I} are multiplicative sets of A ▷◁ I for every
multiplicative set S0 of A.

Now, the main result of this section is the following theorem.

Theorem 3.1. Let A be a ring, I be an ideal of A, A ▷◁ I be the amalgamation
duplication of A along I, S be a multiplicative set of A ▷◁ I and set S0 = {s ∈
A | (s, s+ i) ∈ S for some i ∈ I} which is a multiplicative set of A. Then:

(1) If A ▷◁ I is S-coherent, then A is S0-coherent.
(2) Assume that S = {(s, s) ∈ A ▷◁ I | s ∈ S0} and I is an S0-finite ideal

of A. Then A ▷◁ I is S-coherent if and only if A is S0-coherent.

Before proving Theorem 3.1, we establish the following lemma.

Lemma 3.2. Under the hypothesis of Theorem 3.1(2), assume that A is S0-
coherent and I × 0 is an S-coherent (A ▷◁ I)-module. Then, A ▷◁ I is S-
coherent.

Proof. Recall that I × 0 is an ideal of A ▷◁ I with A▷◁I
I×0

∼= A by [7, Remark

1(b)]. But (I × 0) ∩ S = ∅ and T := {(s, s) + (I × 0) | s ∈ S} ∼= S0 which is a
multiplicative set of A. Therefore, A ▷◁ I is S-coherent by [5, Proposition 3.9
(2)] since A (∼= A▷◁I

I×0 ) is S0-coherent and I×0 is an S-coherent (A ▷◁ I)-module,
as desired. □

Proof of Theorem 3.1. (1) Assume that A ▷◁ I is S-coherent and let J0 :=∑n
i=1 Aai be a finitely generated proper ideal of A. Set J :=

∑n
i=1(A ▷◁

I)(ai, ai) to be an ideal of A ▷◁ I and consider the exact sequence of (A ▷◁ I)-
modules:

0 → Ker(u) → (A ▷◁ I)n = An ▷◁ In
u→ J → 0,

where u((bi, bi + ji)i=1,...,n) =
∑n

i=1(bi, bi + ji)(ai, ai) = (
∑n

i=1 biai,
∑n

i=1(bi +
ji)ai). On the other hand, consider the exact sequence of A-modules:

0 → Ker(v) → An v→ J0 → 0,

where v((bi)i=1,...,n) =
∑n

i=1 aibi. Hence,

Ker(u) = {((bi, bi + ji)i=1,...,n) ∈ An ▷◁ In |
n∑

i=1

biai =

n∑
i=1

jiai = 0}

= Ker(v) ▷◁ G0,

where G0 = {ji ∈ In |
∑n

i=1 jiai = 0}. But J is S-finitely presented since
A ▷◁ I is S-coherent, that is, Ker(u) is an S-finite (A ▷◁ I)-module. Then, there
exist (s, s + i) ∈ S and a finitely generated (A ▷◁ I)-module L :=

∑n
i=1(A ▷◁

I)(xi, xi + fi)(⊆ Ker(u)) for some (xi, xi + fi) ∈ L and a positive integer m,
such that

(s, s+ i)Ker(u) ⊆ L ⊆ Ker(u).

Hence, for L0 :=
∑m

i=1 Axi, we have

sKer(v) ⊆ L0 ⊆ Ker(v)
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and so Ker(v) is S0-finite, as desired. Hence, A is S0-coherent.
(2) By (1) it remains to show that if A is S0-coherent and I is S0-finite, then

A ▷◁ I is S-coherent. Hence, it remains to show that I × 0 is an S-coherent
(A ▷◁ I)-module by Lemma 3.2.

Let H be a finitely generated subideal of I × 0 and we will show that H is
S-finitely presented. Clearly, H =

∑n
i=1(A ▷◁ I)(ai, 0) for some positive integer

n and ai ∈ I. Consider the exact sequence of (A ▷◁ I)-modules:

0 → Ker(u) → (A ▷◁ I)n = An ▷◁ In
u→ H → 0,

where u(bi, bi + ji)i=1,...,n =
∑n

i=1(bi, bi + ji)(ai, 0) = (
∑n

i=1 biai, 0). So that
Ker(u) = {(bi, bi + ji)i=1,...,n ∈ (A ▷◁ I)n |

∑n
i=1 biai = 0}. Now, set J :=∑n

i=1 Aai a finitely generated subideal of I, and consider the exact sequence of
A-modules:

0 → Ker(v) → An v→ J → 0,

where v((bi)i=1,...,n) =
∑n

i=1 biai. So under the (A ▷◁ I)-module identification
(A ▷◁ I)n = An ▷◁ In, we have Ker(u) = Ker(v) ▷◁ In. But J is S0-finitely
presented since A is S0-coherent. Hence, Ker(v) is an S0-finite A-module.
Our aim is to show that Ker(u) is S-finite. Since Ker(v) is S0-finite, there
exist s ∈ S0 and a finitely generated A-module

∑m
i=1 Aei(⊆ Ker(v)) for some

positive integer m and ei ∈ Ker(v) such that

(∗) sKer(v) ⊆
m∑
i=1

Aei ⊆ Ker(v).

On the other hand, since In is S0-finite (since I is S0-finite), there exist s
′ ∈ S0

and a finitely generated A-module
∑p

i=1 Afi for some positive integer p and
fi ∈ In such that

(∗∗) s′In ⊆
p∑

i=1

Afi ⊆ In.

We may assume that s = s′ by replacing s and s′ by ss′. Therefore, by (∗)
and (∗∗), we have

(s, s)(Ker(v) ▷◁ In) ⊆
m∑
i=1

(A ▷◁ I)(ei, ei) +

p∑
i=1

(A ▷◁ I)(0, fi)

⊆ Ker(v) ▷◁ In

and so Ker(u) := Ker(v) ▷◁ In is S-finite. Hence, I × 0 is an S-coherent
(A ▷◁ I)-module which completes the proof of Theorem 3.1. □

Using Theorem 3.1 in the case when S0 consists of units of A and S =
{(s, s) | s ∈ S0}, we regain the result [6, Lemma 4.2].

Corollary 3.3. Let A be a ring, I be an ideal of A, and A ▷◁ I be the amalga-
mation duplication of A along I. Then

(1) If A ▷◁ I is coherent, then so is A.
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(2) Assume that I is a finitely generated ideal of A. Then A ▷◁ I is coherent
if and only if so is A.

We know that a coherent ring is an S-coherent ring for every multiplicative
set. The converse is false as the following example shows.

Example 3.4. Let A be a non-coherent S0-coherent ring (take for example
A = Z + XR[[X]] which is not coherent by [13, Theorem 5.2.3] and an S0-
Noetherian ring by Example 2.1, where S0 = A− {0}) for some multiplicative
set S0 of A and let I be an S0-finite ideal of A (take for example A to be an
integral domain and S0 = A− {0}). Then

(1) A ▷◁ I is an S-coherent ring by Theorem 3.1, where S = {(s, s) ∈ A ▷◁
I | s ∈ S0}.

(2) A ▷◁ I is not a coherent ring by [1, Corollary 2.8(1)] since A is not
coherent.
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