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Abstract. Hankel operators and their variants have abundant applica-
tions in numerous fields. For a non-zero complex number r, the r-Hankel

operators on a Hilbert space H define a class of one such variant. This

article introduces and explores some properties of two other variants of
Hankel operators namely kth-order (C, r)-Hankel operators and kth-order

(R, r)-Hankel operators (k ≥ 2) which are closely related to r-Hankel op-
erators in such a way that a kth-order (C, r)-Hankel matrix is formed from

rk-Hankel matrix on deleting every consecutive (k− 1) columns after the

first column and a kth-order (R, rk)-Hankel matrix is formed from r-
Hankel matrix if after the first column, every consecutive (k−1) columns

are deleted. For |r| ̸= 1, the characterizations for the boundedness of

these operators are also completely investigated. Finally, an appropriate
approach is also presented to extend these matrices to two-way infinite

matrices.

1. Introduction

Hankel operators are defined as operators having infinite Hankel matrices,
i.e., matrices with entries depending only on the sum of the coordinates, with
respect to some orthonormal basis. After Kroncker’s significant work [4] on
characterization of Hankel matrices of finite rank as those whose entries are
Taylor coefficients of rational functions, this domain has found plenty of ap-
plications [9] in classical problems of analysis, such as moment problems, or-
thogonal polynomials, etc. The description of bounded Hankel operators by
Nehari [8] in 1957 turned out to be fundamental in initiating the progressive
period of the study of Hankel operators. Ever since the introduction of this
notion, many variants (see [1, 3, 5, 6, 9] and the references therein) have also
been studied due to their multitudinal applications in the study of smoothness
of wavelets, perturbation and control theory, rational approximation and so on.
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A recent work in this direction by Mirotin et al. [7] introduces the notion of
µ-Hankel operators on Hilbert spaces as follows: Let µ be a complex number,
α = (αn)n≥0 be a complex sequence and H1 and H2 be separable Hilbert
spaces. The operator Aµ,α : H1 → H2 is called µ-Hankel operator if for some
orthonormal bases (ek)k≥0 and (e′j)j≥0 of H1 and H2, respectively, the matrix

(ajk)k,j≥0 of this operator consists of elements of the form ajk = µkαj+k.
Motivated by this study, Bhola and Gupta [2] introduced and studied two
new classes of operators (C, r)-Hankel operators and (R, r)-Hankel operators
on general Hilbert spaces that are closely related to Hankel operators in the
sense that these classes result in µ-Hankel operator if alternate columns of
one or alternate rows of the other are deleted. In this article, we generalize
the concepts of (C, r)-Hankel operators and (R, r)-Hankel operators to kth-
order (C, r)-Hankel operators and kth-order (R, r)-Hankel operators on general
Hilbert spaces for any integer k ≥ 2. Interesting results are established for these
operators in terms of operator equations. For |r| ≠ 1, the characterizations for
the boundedness of these operators are completely obtained. Finally, a future
scope of study is also presented to extend these matrices to two-way infinite
matrices.

The following are some preliminaries used in this article: The symbols C,
Z and N0 denote the set of all complex numbers, integers and non-negative
integers, respectively. The symbol k is restricted for any integer greater than
or equal to 2. A bounded linear operator T on a Hilbert space H is said to be
Hilbert-Schmidt operator if the Hilbert-Schmidt norm ∥T ∥2HS =

∑
n ∥T (un)∥2

< ∞ for any orthonormal basis (un) of H, where ∥ · ∥ represents the norm
of H. A bounded operator T on H is said to be isometry if T ∗T = IH, and
unitary if T is bijective and T ∗T = T T ∗ = IH, where IH denotes the identity
operator on H. Throughout the article, we restrict the symbols H1 and H2 for
any separable Hilbert spaces. If H1 = H2, then it is denoted by H. We denote
by (ui)i∈N0 and (vi)i∈N0 , the orthonormal bases for H1 and H2, respectively.
The symbols U1 and U2 denote the unilateral right shift operators on H1 and
H2, respectively and are defined as U1(ui) = ui+1 and U2(vi) = vi+1 for all
i ∈ N0.

2. The kth-order (C, r)-Hankel operator and its properties

In this section, we introduce and study some properties of the kth-order
(C, r)-Hankel operator from a Hilbert space H1 to Hilbert space H2, defined
as under:

Definition. Let k ≥ 2 be an integer, r ∈ C be a non-zero element and (αn)n∈N0

be a sequence of complex numbers. An operator T from a Hilbert space H1 to
Hilbert space H2 is said to be kth-order (C, r)-Hankel operator if

T (ui) =

∞∑
j=0

riαi+kjvj for all i ∈ N0,
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where (ui)i∈N0
and (vi)i∈N0

are orthonormal bases for H1 and H2, respectively.
That is, for i, j ∈ N0, if ai,j is the (i, j)th-entry of the matrix representation of
T with respect to the orthonormal bases then

ai,j = ⟨T (uj), vi⟩ =

〈 ∞∑
l=0

rjαj+klvl, vi

〉
=

∞∑
l=0

rjαj+kl⟨vl, vi⟩ = rjαj+ki,

and hence, the corresponding matrix is given as:

[T ] =



α0 rα1 r2α2 r3α3 r4α4 . . .
αk rαk+1 r2αk+2 r3αk+3 r4αk+4 . . .
α2k rα2k+1 r2α2k+2 r3α2k+3 r4α2k+4 . . .
α3k rα3k+1 r2α3k+2 r3α3k+3 r4α3k+4 . . .
α4k rα4k+1 r2α4k+2 r3α4k+3 r4α4k+4 . . .
...

...
...

...
... . . .


.

Remark 2.1. (A) A kth-order (C, r)-Hankel operator becomes rk-Hankel oper-
ator if after the first column, every consecutive (k − 1) columns are deleted.

(B) For a non-zero complex number r and complex sequence (αn)n∈N0 , a
kth-order (C, r)-Hankel operator may not be bounded, in general. For example,
take r = 1− 2i, αn = 1√

n+1
for all n ∈ N0 and x =

∑∞
n=0

1
(1−2i)nun. Then,

∥x∥2 =

∞∑
n=0

|xn|2 =

∞∑
n=0

∣∣∣∣ 1

(1− 2i)n

∣∣∣∣2
is finite, that is, x ∈ H. If T is a kth-order (C, r)-Hankel operator on H, then

∥T (x)∥2 =

∞∑
j=0

∣∣∣∣∣
∞∑

n=0

1

(1− 2i)n
rnαn+kj

∣∣∣∣∣
2

=

∞∑
j=0

∣∣∣∣∣
∞∑

n=0

1√
n+ kj + 1

∣∣∣∣∣
2

→ ∞.

Therefore, T is not bounded.

The above example shows that in general, a kth-order (C, r)-Hankel operator
may not be bounded. The following result presents a characterization for the
boundedness of a kth-order (C, r)-Hankel operator for |r| < 1.

Theorem 2.2. Let r be a non-zero complex number such that |r| < 1 and
(αn)n∈N0

be a complex sequence. Then the kth-order (C, r)-Hankel operator,

T : H1 → H2 is bounded if and only if
∑k−1

j=0

∑
n∈N0

|r|2j |αkn+j |2 < ∞.

Proof. Let |r| < 1. If T is bounded, then there exists a positive constant C
such that ∥T (x)∥2 ≤ C∥x∥2 for every x ∈ H1. For each j = 0, 1, . . . k − 1, take
x = uj , we get

∑
n∈N0

|r|2j |αkn+j |2 = ∥T (uj)∥2 ≤ C∥uj∥2 = C. Therefore,∑k−1
j=0

∑
n∈N0

|r|2j |αkn+j |2 is finite.
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Conversely, suppose that
∑k−1

j=0

∑
n∈N0

|r|2j |αkn+j |2 is finite. Consider

∞∑
i=0

∞∑
l=0

|⟨T (ul), vi⟩|2 =

k−1∑
j=0

∞∑
n=0

|rj |2|αkn+j |2(1 + |rk|2 + |r2k|2 + · · ·+ |rkn|2)

=

k−1∑
j=0

∞∑
n=0

|r|2j |αkn+j |2(1 + |r|2k + |r|4k + · · ·+ |r|2kn)

=

k−1∑
j=0

∞∑
n=0

|r|2j |αkn+j |2(1+|r|2k+(|r|2k)2+· · ·+(|r|2k)n)

=

k−1∑
j=0

∞∑
n=0

|r|2j |αkn+j |2
(
1− |r|2k(n+1)

1− |r|2k

)

≤
(

1

1− |r|2k

)k−1∑
j=0

∞∑
n=0

|r|2j |αkn+j |2
 .

This implies that
∑∞

i=0

∑∞
l=0 |⟨T (ul), vi⟩|2 < ∞. Therefore, T is Hilbert-

Schmidt operator and hence bounded. □

A careful examination of the entries of a kth-order (C, r)-Hankel matrix
points out at a relation between the entries. The same is established via the
operator equation given in the following result:

Theorem 2.3. Let U1 and U2 be the unilateral right shift operators on H1 and
H2, respectively and r be a non-zero complex number. Then a bounded linear
operator T : H1 → H2 is a kth-order (C, r)-Hankel operator for a complex
sequence (αn)n∈N0 if and only if T Uk

1 = rkU∗
2T .

Proof. Suppose T : H1 → H2 is a kth-order (C, r)-Hankel operator for some
complex sequence (αn)n∈N0 . For each i, l ∈ N0,

⟨T Uk
1 (ui), vl⟩ = ⟨T (ui+k), vl⟩ = ri+kαi+k+kl

and

⟨rkU∗
2T (ui), vl⟩ = rk⟨T (ui),U2(vl)⟩ = rk⟨T (ui), vl+1⟩

= rkriαi+k+kl = ri+kαi+k+kl.

Using the boundedness of T , it follows that T Uk
1 = rkU∗

2T .
Conversely, let T Uk

1 = rkU∗
2T . We define a complex sequence (αn)n∈N0

as
αn = (1/r)j⟨T (uj), vp⟩ if n = kp+ j, p ∈ N0, j ∈ {0, 1, . . . k− 1}. Then, for all
non-negative integers i, l such that i = kp+ j, where p ∈ N, j ∈ {0, 1, . . . k−1},

⟨T (ui), vl⟩ = ⟨T Uk
1 (ui−k), vl⟩ = ⟨rkU∗

2T (ui−k), vl⟩ = rk⟨T (ui−k),U2(vl)⟩

= rk⟨T (ui−k), vl+1⟩ = · · · = r2k⟨T (ui−2k), vl+2⟩ = · · ·

= rkp⟨T (uj), vl+p⟩ = rjrkpαkp+kl+j = riαi+kl.
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Hence, T is a kth-order (C, r)-Hankel operator for the sequence (αn)n∈N0
. □

3. The kth-order (R, r)-Hankel operator and its properties

This section firstly introduces the kth-order (R, r)-Hankel operator from a
Hilbert space H1 to Hilbert space H2 and examines some of its properties.
Meanwhile, the relationship between kth-order (C, r)-Hankel operator and kth-
order (R, s)-Hankel operator corresponding to complex sequences (αn)n∈N0

and
(βn)n∈N0 , respectively, are investigated in terms of their adjoints.

Definition. Let k ≥ 2 be an integer, r be a non-zero complex number and
(αn)n∈N0 be a sequence of complex numbers. A linear operator T from a Hilbert
space H1 to Hilbert space H2 is said to be kth-order (R, r)-Hankel operator if

T (ui) =

∞∑
j=0

riαki+jvj for all i ∈ N0,

where (ui)i∈N0 and (vi)i∈N0 are orthonormal bases for H1 and H2, respectively.

Observe that for i, j ∈ N0, the (i, j)th-entry of the matrix representation of
T with respect to the orthonormal bases is bi,j = ⟨T (uj), vi⟩ = rjαkj+i and
the corresponding matrix is given as:

[T ] =



α0 rαk r2α2k r3α3k r4α4k . . .
α1 rαk+1 r2α2k+1 r3α3k+1 r4α4k+1 . . .
α2 rαk+2 r2α2k+2 r3α3k+2 r4α4k+2 . . .
α3 rαk+3 r2α2k+3 r3α3k+3 r4α4k+3 . . .
α4 rαk+4 r2α2k+4 r3α3k+4 r4α4k+4 . . .
...

...
...

...
... . . .


.

Remark 3.1. (A) A kth-order (R, r)-Hankel operator becomes r-Hankel oper-
ator if after the first row, every consecutive (k − 1) rows are deleted.

(B) For a non-zero complex number r and complex sequence (αn)n∈N0
, a kth-

order (R, r)-Hankel operator, in general, may not be bounded. For an example,
take r = 1 − i, αn = 1√

2n+1
for all n ∈ N0 and x =

∑∞
n=0

1
(1−i)nun. Then,

∥x∥2 =
∑∞

n=0 |xn|2 =
∑∞

n=0

∣∣∣ 1
(1−i)n

∣∣∣2 is finite, that is, x ∈ H. If T is a kth-order

(R, r)-Hankel operator on H, then ∥T (x)∥2 =
∑∞

j=0

∣∣∣∑∞
n=0

1
(1−i)n r

nαkn+j

∣∣∣2 =∑∞
j=0

∣∣∣∑∞
n=0

1√
2kn+2j+1

∣∣∣2 → ∞. Therefore, T is not bounded.

The next result characterizes the boundedness of kth-order (R, r)-Hankel
operators for |r| < 1.

Theorem 3.2. Let r be a non-zero complex number such that |r| < 1 and
(αn)n∈N0

be a complex sequence. Then the kth-order (R, r)-Hankel operator,
T : H1 → H2 is bounded if and only if

∑∞
n=0 |αn|2 < ∞.
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Proof. Let |r| < 1 and T be a bounded operator. Then there exists a positive
constant C such that ∥T (x)∥2 ≤ C∥x∥2 for every x ∈ H1. Taking in particular
x = u0, we get

∑
n∈N0

|αn|2 = ∥T (u0)∥2 ≤ C∥u0∥2 = C.

Conversely, suppose that
∑∞

n=0 |αn|2 < ∞. Consider

∞∑
i=0

∞∑
l=0

|⟨T (ul), vi⟩|2 =

k−1∑
j=0

∞∑
n=0

|αkn+j |2(1 + |r|2 + |r2|2 + · · ·+ |rn|2)

=

k−1∑
j=0

∞∑
n=0

|αkn+j |2(1 + |r|2 + (|r|2)2 + · · ·+ (|r|2)n)

=

k−1∑
j=0

∞∑
n=0

|αkn+j |2
(1− |r|2(n+1)

1− |r|2

)

≤
(

1

1− |r|2

)k−1∑
j=0

∞∑
n=0

|αkn+j |2


=

(
1

1− |r|2

)( ∞∑
n=0

|αn|2
)
.

Using
∑∞

n=0 |αn|2 < ∞, it follows that
∑∞

i=0

∑∞
l=0 |⟨T (ul), vi⟩|2 < ∞. There-

fore, the operator T is Hilbert-Schmidt and hence bounded. □

Proposition 3.3. Let r be a non-zero complex number and (αn)n∈N0
⊂ C be a

sequence. Then the adjoint of a bounded kth-order (C, r)-Hankel operator, T :
H1 → H2 is a kth-order (R, s)-Hankel operator, S from H2 to H1 corresponding
to the complex sequence (βn)n∈N0

, where s = 1

rk
and βn = rnαn for each

n ∈ N0.

Proof. Let i, j ∈ N0. Evaluating

⟨T ∗(vj), ui⟩ = ⟨vj , T (ui)⟩ = ⟨T (ui), vj⟩ = riαi+kj = riαi+kj

and

⟨S(vj), ui⟩ = sjβi+kj =

(
1

rk

)j

ri+kjαi+kj = riαi+kj .

Hence, T ∗ = S, where s = 1

rk
and βn = rnαn for each n ∈ N0. □

We have seen in Theorem 2.3 that there is a characterization of kth-order
(C, s)-Hankel operator in terms of an operator equation. Using this character-
ization and the fact that a kth-order (R, r)-Hankel operator can be obtained
from a kth-order (C, s)-Hankel operator by taking its adjoint, the following re-
sult presents a characterization of a kth-order (R, r)-Hankel operator in terms
of an operator equation:
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Theorem 3.4. Let U1 and U2 be the right shift operators on H1 and H2,
respectively. Let r be a non-zero complex number. Then a bounded operator
T : H1 → H2 is a kth-order (R, r)-Hankel operator for some complex sequence
(αn)n∈N0 if and only if T U1 = r(U∗

2 )
kT .

Proof. Suppose that T is a kth-order (R, r)-Hankel operator for a complex
sequence (αn)n∈N0

. Using Proposition 3.3, it follows that T = C∗, where C :
H2 → H1 is a kth-order (C, s)-Hankel operator corresponding to the sequence

(βn)n∈N0
, where s =

(
1
r

) 1
k and βn =

(
1
rn

)
αn for each n ∈ N0. Now, Theorem

2.3 gives CUk
2 = skU∗

1 C. Taking adjoint on both sides, it follows that (U∗
2 )

kC∗ =
skC∗U1. That is, T U1 = r(U∗

2 )
kT .

Conversely, if an operator T is such that T U1 = r(U∗
2 )

kT . Then, by reversing
the steps above and by using Theorem 2.3 and Proposition 3.3, we conclude that
T is a kth-order (R, r)-Hankel operator for some complex sequence (αn)n∈N0

.
□

Theorem 3.5. Let k ≥ 2 be an integer, r be a non-zero complex number such
that |r| > 1 and (αn)n∈N0 be a complex sequence. Then the following hold:

(A) The kth-order (C, r)-Hankel operator T : H1 → H2 is bounded if and
only if

∑∞
n=0 |r|2n|αn|2 < ∞.

(B) The kth-order (R, r)-Hankel operator T : H1 → H2 is bounded if and

only if
∑k−1

j=0

∑
n∈N0

|r|−(2j/k)−2kn−2j |αkn+j |2 < ∞.

Proof. Let |r| > 1 and (αn)n∈N0
be a complex sequence.

(A) Let s = 1

rk
and (βn)n∈N0

be a sequence, where βn = rnαn for each

n ∈ N0. The kth-order (C, r)-Hankel operator T is bounded if and only if T ∗

is bounded. Using Proposition 3.3, it follows that the operator T ∗ is kth-order
(R, s)-Hankel operator corresponding to the complex sequence (βn)n∈N0

. Since
|s| < 1, therefore, using Theorem 3.2, it is concluded that T ∗ is bounded if and
only if

∑∞
n=0 |βn|2 < ∞, that is,

∑∞
n=0 |r|2n|αn|2 < ∞.

(B) Let s =
(
1
r

) 1
k and βn =

(
1
rn

)
αn for each n ∈ N0. Since |r| > 1, so

|s| < 1. The kth-order (R, r)-Hankel operator T is bounded if and only if T ∗

is bounded. Using Proposition 3.3, it follows that the operator T ∗ is kth-order
(C, s)-Hankel operator corresponding to the complex sequence (βn)n∈N0

. Since
|s| < 1, therefore, using Theorem 2.2, it gives T ∗ is bounded if and only if∑k−1

j=0

∑
n∈N0

|s|2j |βkn+j |2 < ∞. □

4. Commutativity

In this section, commutativity of bounded kth-order (C, r)-Hankel opera-
tors and bounded kth-order (R, s)-Hankel operators on a Hilbert space H are
investigated. Moreover, it is proved that there does not exist any unitary oper-
ator in the class of kth-order (C, r)-Hankel operator or in the class of kth-order
(R, r)-Hankel operator for any non-zero r ∈ C.
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Theorem 4.1. Let r and s be non-zero complex numbers and (αn)n∈N0
and

(βn)n∈N0
be two complex sequences. Then the following hold:

(A) The bounded kth-order (C, r)-Hankel operators T commutes with the
bounded kth-order (C, s)-Hankel operator V on a Hilbert space H if
and only if

∞∑
j=0

siβi+kjr
jαj+kl =

∞∑
j=0

riαi+kjs
jβj+kl

for all i, l ∈ N0, provided the series on both sides converge.
(B) The bounded kth-order (C, r)-Hankel operator T commutes with the

bounded kth-order (R, s)-Hankel operator V on H if and only if

∞∑
j=0

siβki+jr
jαj+kl =

∞∑
j=0

riαi+kjs
jβkj+l

for all i, l ∈ N0, provided the series on both sides converge.

Proof. (A) For each i ∈ N0, consider

T V(ui) = T

 ∞∑
j=0

siβi+kjuj

 =

∞∑
j=0

siβi+kjT (uj)

=

∞∑
j=0

siβi+kj

( ∞∑
l=0

rjαj+klul

)

=

∞∑
l=0

 ∞∑
j=0

siβi+kjr
jαj+kl

ul.(1)

Similarly, we obtain that

(2) VT (ui) =

∞∑
l=0

 ∞∑
j=0

riαi+kjs
jβj+kl

ul.

Since (ui)i∈N0
is an orthonormal basis for H, therefore, using equations (1) and

(2), it follows that T and V commute if and only if

∞∑
j=0

siβi+kjr
jαj+kl =

∞∑
j=0

riαi+kjs
jβj+kl

for all i, l ∈ N0.
(B) For each i ∈ N0, evaluate

T V(ui) = T

 ∞∑
j=0

siβki+juj

 =

∞∑
j=0

siβki+jT (uj)
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=

∞∑
j=0

siβki+j

( ∞∑
l=0

rjαj+klul

)

=

∞∑
l=0

 ∞∑
j=0

siβki+jr
jαj+kl

ul.(3)

Similarly, it is obtained that

(4) VT (ui) =

∞∑
l=0

 ∞∑
j=0

riαi+kjs
jβkj+l

ul.

Using equations (3) and (4), it follows that T and V commute if and only if

∞∑
j=0

siβki+jr
jαj+kl =

∞∑
j=0

riαi+kjs
jβkj+l

for all i, k ∈ N0. □

The example below exhibits a pair of such commuting operators:

Example 4.2. If r = s = ι
2 , αn = ( ι2 )

n and βn = ιn

2n+1 for all n ∈ N0,

then one can easily see that the kth-order (C, r)-Hankel operator and kth-order
(C, s)-Hankel operator are bounded (using Theorem 2.2) and they satisfy the
following expression:

∞∑
j=0

siβi+kjr
jαj+kl =

∞∑
j=0

riαi+kjs
jβj+kl

for all i, l ∈ N0. Hence, these operators commute on H.

Let C0,0 denote the set of all complex sequences whose only finitely many
terms are non-zero.

Theorem 4.3. Let r, s ∈ C\{0} and α, β ∈ C0,0 be non-zero sequences, where
α = (αj)j∈N0

and β = (βj)j∈N0
. Let n and m be the largest non-negative inte-

gers such that αn ̸= 0 and βm ̸= 0. Then the kth-order (R, r)-Hankel operator
T and kth-order (R, s)-Hankel operator V on a Hilbert space H commute if and
only if n = m, r = s and there exists λ ∈ C such that βj = λαj for all j ∈ N0.

Proof. Let if possible, n ̸= m. Without loss of generality, we can assume that
n > m. Let n = kp + r1 and m = kq + r2, where p, q ∈ N0 and r1, r2 ∈
{0, 1, . . . , k−1}. In this case, we will show that the operators do not commute.
On the contrary, assume that T and V commute, that is, T V(x) = VT (x) for
all x ∈ H. In particular, take x = uq. Consider

T V(uq) = T

 ∞∑
j=0

sqβkq+juj

 = T

 r2∑
j=0

sqβkq+juj
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=

r2∑
j=0

sqβkq+j

( ∞∑
i=0

rjαkj+iui

)
=

∞∑
i=0

 r2∑
j=0

sqβkq+jr
jαkj+i

ui

=

n∑
i=0

 r2∑
j=0

sqβkq+jr
jαkj+i

ui.(5)

Similarly, we can obtain that

(6) VT (uq) =

m∑
i=0

n−kq∑
j=0

rqαkq+js
jβkj+i

ui.

Since the set (uj)j∈N0
is an orthonormal basis of H, αi = 0 for every i > n and

βj = 0 for every j > m, therefore, on comparing the coefficients of un, un−1,
un−2 successively to u0, we get αn = 0, a contradiction. Therefore, n = m.

Now, if n = m. Let n = kp+ r1, where p ∈ N0 and r1 ∈ {0, 1, . . . k − 1}. In
particular, take x = up in T V(x) = VT (x), we have

(7) T V(up) = VT (up).

Consider

T V(up) = T

 ∞∑
j=0

spβkp+juj

 = T

 r1∑
j=0

spβkp+juj


=

r1∑
j=0

spβkp+j

( ∞∑
i=0

rjαkj+iui

)
=

∞∑
i=0

 r1∑
j=0

spβkp+jr
jαkj+i

ui

=

n∑
i=0

 r1∑
j=0

spβkp+jr
jαkj+i

ui.(8)

Similarly, we can obtain that

(9) VT (up) =

n∑
i=0

 r1∑
j=0

rpαkp+js
jβkj+i

ui.

Since the set (uj)j∈N0
is an orthonormal basis of H and αi = 0 = βi for every

i > n, therefore, on comparing the coefficients of un, un−1, un−2 successively

to u0, it follows that s = r and βj = λαj for all 0 ≤ j ≤ n where λ = βn

αn
. □

As a consequence of this result and by using Proposition 3.3, we get the
following result:

Corollary 4.4. Let r, s ∈ C\{0} and α, β ∈ C0,0 be non-zero sequences, where
α = (αj)j∈N0

and β = (βj)j∈N0
. Let n and m be the largest non-negative

integers such that αn ̸= 0 and βm ̸= 0. Then the kth-order (C, r)-Hankel
operator T and kth-order (C, s)-Hankel operator V commute on Hilbert space
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H if and only if n = m, rk = sk and there exists λ ∈ C such that sjβj = λrjαj

for all j ∈ N0.

Proposition 4.5. There does not exist any unitary kth-order (C, r)-Hankel
operator for any non-zero r ∈ C.

Proof. If possible, let there exist a unitary kth-order (C, r)-Hankel operator T
for some complex sequence (αn)n∈N0

. This implies that

(10) ∥T (x)∥2 = ∥x∥2 = ∥T ∗(x)∥2

for all x ∈ H.
Case 1: If |r| < 1. For x = u0 and uk in equation (10), we get

∞∑
j=0

|αkj |2 = 1 and

∞∑
j=1

|r|2k|αkj |2 = 1.

On solving simultaneously, we obtain that |α0|2 = 1− 1
|r|2k < 0, a contradiction.

Case 2: If |r| > 1. Using Proposition 3.3, it follows that T ∗ is kth-order (R, s)-
Hankel operator corresponding to complex sequence (βn)n∈N0 , where s = 1

rk

and βn = rnαn for each n ∈ N0. For x = u0 in equation (10), we get

(11)

∞∑
j=0

|βj |2 = 1.

Now take x = u1 in equation (10), we get

(12)

∞∑
j=0

|s|2|βk+j |2 = 1.

On solving equations (11) and (12), it follows that
∑k−1

j=0 |βj |2 = 1 − 1
|s|2 < 0

(a contradiction), since |r| > 1 implies |s| < 1.
Case 3: If |r| = 1. For each i ∈ N0, take x = ui in equation (10), we get∑∞

j=0 |αkj |2 = 1,
∑∞

j=0 |r|2|αkj+1|2 = 1,
∑∞

j=0 |r|4|αkj+2|2 = 1, . . . , so on. On
solving these equations, we get αi = 0 for all i ∈ N0, a contradiction.

Hence, there does not exist any unitary kth-order (C, r)-Hankel operator for
any non-zero r ∈ C. □

As a consequence of this result, we get the following results:

Corollary 4.6. There does not exist any unitary kth-order (R, r)-Hankel op-
erator for any non-zero r ∈ C.

Corollary 4.7. Let r be a non-zero complex number. Then the following hold:

(A) If |r| < 1, then there does not exist any isometric kth-order (C, r)-
Hankel operator.

(B) If |r| > 1, then there does not exist any isometric kth-order (R, r)-
Hankel operator.
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5. Future scope of study

In the previous sections, we have studied several properties of kth-order
(C, r)-Hankel operators and kth-order (R, r)-Hankel operators from a Hilbert
space H1 to a Hilbert space H2 for non-zero complex number r and complex
sequence (αn)n∈N0 . Also, we have seen that the following one-way infinite
matrix represents the matrix representation of (C, r)-Hankel operator, T with
respect to the orthonormal bases:

(13) [T ] =



α0 rα1 r2α2 r3α3 r4α4 . . .
αk rαk+1 r2αk+2 r3αk+3 r4αk+4 . . .
α2k rα2k+1 r2α2k+2 r3α2k+3 r4α2k+4 . . .
α3k rα3k+1 r2α3k+2 r3α3k+3 r4α3k+4 . . .
α4k rα4k+1 r2α4k+2 r3α4k+3 r4α4k+4 . . .
...

...
...

...
... . . .


.

This concept of operator matrix can be generalized to form two-way infinite
matrix in the following manner:

(14)



. . .
...

...
...

...
...

...
... . . .

. . . 1
r3α−3k−3

1
r2α−3k−2

1
rα−3k−1 α−3k rα−3k+1 r2α−3k+2 r3α−3k+3 . . .

. . . 1
r3α−2k−3

1
r2α−2k−2

1
rα−2k−1 α−2k rα−2k+1 r2α−2k+2 r3α−2k+3 . . .

. . . 1
r3α−k−3

1
r2α−k−2

1
rα−k−1 α−k rα−k+1 r2α−k+2 r3α−k+3 . . .

. . . 1
r3α−3

1
r2α−2

1
rα−1 α0 rα1 r2α2 r3α3 . . .

. . . 1
r3αk−3

1
r2αk−2

1
rαk−1 αk rαk+1 r2αk+2 r3αk+3 . . .

. . . 1
r3α2k−3

1
r2α2k−2

1
rα2k−1 α2k rα2k+1 r2α2k+2 r3α2k+3 . . .

. . . 1
r3α3k−3

1
r2α3k−2

1
rα3k−1 α3k rα3k+1 r2α3k+2 r3α3k+3 . . .

. . .
...

...
...

...
...

...
... . . .


,

where (αn)n∈Z is a two-way complex sequence.
It can be observed that if |r| ≠ 1 then this type of matrix induces only

unbounded operators from H1 to H2. So, there is another way to generalize
kth-order (C, r)-Hankel matrix which leads to a bounded operator from H1 to
H2 if r is chosen appropriately. Consider the following matrix:

(15)



. . .
...

...
...

...
...

...
... . . .

. . . r3α−3k−3 r2α−3k−2 rα−3k−1 α−3k rα−3k+1 r2α−3k+2 r3α−3k+3 . . .

. . . r3α−2k−3 r2α−2k−2 rα−2k−1 α−2k rα−2k+1 r2α−2k+2 r3α−2k+3 . . .

. . . r3α−k−3 r2α−k−2 rα−k−1 α−k rα−k+1 r2α−k+2 r3α−k+3 . . .

. . . r3α−3 r2α−2 rα−1 α0 rα1 r2α2 r3α3 . . .

. . . r3αk−3 r2αk−2 rαk−1 αk rαk+1 r2αk+2 r3αk+3 . . .

. . . r3α2k−3 r2α2k−2 rα2k−1 α2k rα2k+1 r2α2k+2 r3α2k+3 . . .

. . . r3α3k−3 r2α3k−2 rα3k−1 α3k rα3k+1 r2α3k+2 r3α3k+3 . . .

. . .
...

...
...

...
...

...
... . . .


.

This is one such generalization of kth-order (C, r)-Hankel matrix, where α0

represents its (0, 0)th entry. Therefore, the two-way kth-order (C, r)-Hankel
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operator, T : H1 → H2 can be defined as:

T (ui) =

∞∑
j=−∞

r|i|αi+kjvj for all i ∈ Z,

where (ui)i∈Z and (vi)i∈Z are orthonormal bases for H1 and H2, respectively.
The following result describes a condition for the boundedness of two-way

kth-order (C, r)-Hankel operators:

Theorem 5.1. Let r be a non-zero complex number such that |r| < 1 and
(αn)n∈Z be a two-way complex sequence. Then the two-way kth-order (C, r)-
Hankel operator, T : H1 → H2 is bounded if and only if

k−1∑
j=0

∑
n∈Z

|r|2j |αkn+j |2 < ∞.

Proof. Let |r| < 1. If a two way kth-order (C, r)-Hankel operator, T is bounded,
then there exists a positive constant C such that ∥T (x)∥2 ≤ C∥x∥2 for ev-
ery x ∈ H1. Take in particular x = u0, we get

∑
n∈Z |αkn|2 = ∥T (u0)∥2 ≤

C∥u0∥2 = C. Again, taking x = u1, u2, . . . , uk−1 successively, it follows that
|r|2

∑
n∈Z |αkn+1|2 ≤ C, |r|4

∑
n∈Z |αkn+2|2 ≤ C, . . . , |r|2k−2

∑
n∈Z |αkn+k−1|2

≤ C. Therefore,
∑k−1

j=0

∑
n∈Z |r|2j |αkn+j |2 < ∞.

Conversely, suppose that
∑k−1

j=0

∑
n∈Z |r|2j |αkn+j |2 < ∞. This implies that

for each j ∈ {0, 1, 2, . . . , k − 1},
∑

n∈Z |r|2j |αkn+j |2 ≤ Cj for some constant Cj

(dependent upon j) and hence,
∑

n∈Z |αkn+j |2 ≤ Cj

|r|2j . Let (Ci,j)i,j∈Z be the

matrix representation of the operator T . Consider

∞∑
i=−∞

∞∑
j=−∞

|Ci,j |2

=

∞∑
n=−∞

|αkn|2(1 + 2|rk|2 + 2|r2k|2 + 2|r3k|2 + · · · ) +
k−1∑
j=1

∞∑
n=−∞

|αkn+j |2(· · ·+ |r3k−j |2+|r2k−j |2+|rk−j |2+|rj |2+|rk+j |2+|r2k+j |2+· · · )

=

∞∑
n=−∞

|αkn|2+2|r|2k
∞∑

n=−∞
|αkn|2(1+|r2k|+|r2k|2+· · · )+

k−1∑
j=1

∞∑
n=−∞

|αkn+j |2(
(· · ·+ |r3k−j |2 + |r2k−j |2 + |rk−j |2) + (|rj |2 + |rk+j |2 + |r2k+j |2 + · · · )

)
=

∞∑
n=−∞

|αkn|2 + 2|r|2k
∞∑

n=−∞
|αkn|2

(
1

1− |r|2k

)
+

k−1∑
j=1

∞∑
n=−∞

|αkn+j |2(
|rk−j |2(· · ·+ |r2k|2 + |r2k|+ 1) + |rj |2(1 + |r2k|+ |r2k|2 + · · · )

)
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=

∞∑
n=−∞

|αkn|2
(
1 +

2|r|2k

1− |r|2k

)
+

k−1∑
j=1

∞∑
n=−∞

(|rk−j |2 + |rj |2)|αkn+j |2(
1 + |r2k|+ |r2k|2 + · · ·

)
=

∞∑
n=−∞

|αkn|2
(
1+

2|r|2k

1−|r|2k

)
+

k−1∑
j=1

∞∑
n=−∞

(|rk−j |2+|rj |2)|αkn+j |2
(

1

1−|r|2k

)

=

∞∑
n=−∞

|αkn|2
(
1 + |r|2k

1− |r|2k

)
+

k−1∑
j=1

∞∑
n=−∞

(|rk−j |2 + |rj |2)|αkn+j |2
(

1

1− |r|2k

)

≤
(

2

1− |r|2k

) ∞∑
n=−∞

|αkn|2 +
k−1∑
j=1

∞∑
n=−∞

(|rk−j |2 + |rj |2)|αkn+j |2


≤
(

2

1− |r|2k

)k−1∑
j=0

∞∑
n=−∞

|r|2j |αkn+j |2 +
k−1∑
j=1

∞∑
n=−∞

|αkn+j |2


≤
(

2

1− |r|2k

)k−1∑
j=0

∞∑
n=−∞

|r|2j |αkn+j |2 +
k−1∑
j=1

Cj

|r|2j

 .

Hence,
∑∞

i=0

∑∞
j=0 |Ci,j |2 < ∞. Therefore, the two-way operator T is Hilbert-

Schmidt and hence bounded. □

Similar generalization can be performed for defining two-way kth-order
(R, r)-Hankel operators from H1 to H2 and this can be done as follows:

T (ui) =

∞∑
j=−∞

r|i|αki+jvj for all i ∈ Z,

where (ui)i∈Z and (vi)i∈Z are orthonormal bases for H1 and H2, respectively
and its matrix representation is given as:

(16)



. . .
...

...
...

...
...

...
... . . .

. . . r3α−3k−3 r2α−2k−3 rα−k−3 α−3 rαk−3 r2α2k−3 r3α3k−3 . . .

. . . r3α−3k−2 r2α−2k−2 rα−k−2 α−2 rαk−2 r2α2k−2 r3α3k−2 . . .

. . . r3α−3k−1 r2α−2k−1 rα−k−1 α−1 rαk−1 r2α2k−1 r3α3k−1 . . .

. . . r3α−3k r2α−2k rα−k α0 rαk r2α2k r3α3k . . .

. . . r3α−3k+1 r2α−2k+1 rα−k+1 α1 rαk+1 r2α2k+1 r3α3k+1 . . .

. . . r3α−3k+2 r2α−2k+2 rα−k+2 α2 rαk+2 r2α2k+2 r3α3k+2 . . .

. . . r3α−3k+3 r2α−2k+3 rα−k+3 α3 rαk+3 r2α2k+3 r3α3k+3 . . .

. . .
...

...
...

...
...

...
... . . .


.

The following result illustrates a characterization for the boundedness of two-
way (R, r)-Hankel operators and its proof is on the similar lines as Theorem
5.1:
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Theorem 5.2. Let r be a non-zero complex number such that |r| < 1 and
(αn)n∈Z be two-way complex sequence. Then the two-way kth-order (R, r)-
Hankel operator T : H1 → H2 is bounded if and only if

∑∞
n=−∞ |αn|2 < ∞.

Acknowledgment. The authors are grateful to the referees for their valuable
suggestions and comments which helped them in improving the manuscript.

References

[1] S. C. Arora and J. Bhola, Spectrum of a kth-order slant Hankel operator, Bull. Math.
Anal. Appl. 3 (2011), no. 2, 175–183.

[2] J. Bhola and B. Gupta, Properties of (C, r)-Hankel operators and (R, r)-Hankel operators
on Hilbert spaces, Kragujevac J. Math., Accepted, 2023.

[3] A. Gupta and B. Gupta, Commutativity and spectral properties of kth-order slant little

Hankel operators on the Bergman space, Oper. Matrices 13 (2019), no. 1, 209–220. https:
//doi.org/10.7153/oam-2019-13-14

[4] L. Kronecker, Zur Theorie der Abelschen Gleichungen, J. Reine Angew. Math. 93 (1882),

338–364. https://doi.org/10.1515/crll.1882.93.338
[5] R. A. Martinez Avendano, Essentially Hankel operators, J. London Math. Soc. (2) 66

(2002), no. 3, 741–752. https://doi.org/10.1112/S002461070200368X

[6] R. A. Martinez Avendano, A generalization of Hankel operators, J. Funct. Anal. 190
(2002), no. 2, 418–446. https://doi.org/10.1006/jfan.2001.3869

[7] A. R. Mirotin and E. Y. Kuzmenkova, µ-Hankel operators on Hilbert spaces, Opuscula

Math. 41 (2021), no. 6, 881–898. https://doi.org/10.7494/opmath.2021.41.6.881
[8] Z. Nehari, On bounded bilinear forms, Ann. of Math. (2) 65 (1957), 153–162. https:

//doi.org/10.2307/1969670

[9] V. V. Peller, Hankel operators and their applications, Springer Monographs in Mathe-

matics, Springer, New York, 2003. https://doi.org/10.1007/978-0-387-21681-2

Jyoti Bhola

Department of Mathematics
Hansraj College

University of Delhi

Delhi, India
Email address: jbhola.24@gmail.com

Bhawna Gupta
Department of Mathematics

Netaji Subhas University of Technology

Dwarka, Delhi, India
Email address: swastik.bhawna26@gmail.com

https://doi.org/10.7153/oam-2019-13-14
https://doi.org/10.7153/oam-2019-13-14
https://doi.org/10.1515/crll.1882.93.338
https://doi.org/10.1112/S002461070200368X
https://doi.org/10.1006/jfan.2001.3869
https://doi.org/10.7494/opmath.2021.41.6.881
https://doi.org/10.2307/1969670
https://doi.org/10.2307/1969670
https://doi.org/10.1007/978-0-387-21681-2

