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GENERALIZED (C,r)-HANKEL OPERATOR AND
(R,r)-HANKEL OPERATOR ON GENERAL HILBERT
SPACES

JyoTi BHOLA AND BHAWNA GUPTA

ABSTRACT. Hankel operators and their variants have abundant applica-
tions in numerous fields. For a non-zero complex number r, the r-Hankel
operators on a Hilbert space H define a class of one such variant. This
article introduces and explores some properties of two other variants of
Hankel operators namely k*"-order (C, r)-Hankel operators and kth-order
(R, r)-Hankel operators (k > 2) which are closely related to r-Hankel op-
erators in such a way that a k*?-order (C, r)-Hankel matrix is formed from
rk-Hankel matrix on deleting every consecutive (k—1) columns after the
first column and a k*'-order (R,rF)-Hankel matrix is formed from r-
Hankel matrix if after the first column, every consecutive (k — 1) columns
are deleted. For |r| # 1, the characterizations for the boundedness of
these operators are also completely investigated. Finally, an appropriate
approach is also presented to extend these matrices to two-way infinite
matrices.

1. Introduction

Hankel operators are defined as operators having infinite Hankel matrices,
i.e., matrices with entries depending only on the sum of the coordinates, with
respect to some orthonormal basis. After Kroncker’s significant work [4] on
characterization of Hankel matrices of finite rank as those whose entries are
Taylor coefficients of rational functions, this domain has found plenty of ap-
plications [9] in classical problems of analysis, such as moment problems, or-
thogonal polynomials, etc. The description of bounded Hankel operators by
Nehari [8] in 1957 turned out to be fundamental in initiating the progressive
period of the study of Hankel operators. Ever since the introduction of this
notion, many variants (see [1,3,5,6,9] and the references therein) have also
been studied due to their multitudinal applications in the study of smoothness
of wavelets, perturbation and control theory, rational approximation and so on.
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A recent work in this direction by Mirotin et al. [7] introduces the notion of
p-Hankel operators on Hilbert spaces as follows: Let p be a complex number,
a = (an)n>0 be a complex sequence and 7, and Hs be separable Hilbert
spaces. The operator A, o : H1 — Ha is called p-Hankel operator if for some
orthonormal bases (ej)r>0 and (e;)jzo of H1 and Ho, respectively, the matrix
(ajk)k,;>0 of this operator consists of elements of the form aj; = ,ukajH;.
Motivated by this study, Bhola and Gupta [2] introduced and studied two
new classes of operators (C,r)-Hankel operators and (R, r)-Hankel operators
on general Hilbert spaces that are closely related to Hankel operators in the
sense that these classes result in pu-Hankel operator if alternate columns of
one or alternate rows of the other are deleted. In this article, we generalize
the concepts of (C,r)-Hankel operators and (R,r)-Hankel operators to k'"-
order (C,r)-Hankel operators and k*"-order (R, r)-Hankel operators on general
Hilbert spaces for any integer k > 2. Interesting results are established for these
operators in terms of operator equations. For |r| # 1, the characterizations for
the boundedness of these operators are completely obtained. Finally, a future
scope of study is also presented to extend these matrices to two-way infinite
matrices.

The following are some preliminaries used in this article: The symbols C,
Z and Ny denote the set of all complex numbers, integers and non-negative
integers, respectively. The symbol k is restricted for any integer greater than
or equal to 2. A bounded linear operator 7 on a Hilbert space H is said to be
Hilbert-Schmidt operator if the Hilbert-Schmidt norm [|7||%¢ = >, |7 (uy)||?
< oo for any orthonormal basis (u,) of H, where | - || represents the norm
of H. A bounded operator 7 on H is said to be isometry if T*7T = I3, and
unitary if T is bijective and T*T = TT* = I3, where I3; denotes the identity
operator on ‘H. Throughout the article, we restrict the symbols H; and Hs for
any separable Hilbert spaces. If H1 = Ho, then it is denoted by H. We denote
by (u;)ien, and (v;)ien,, the orthonormal bases for H; and Hs, respectively.
The symbols U; and Uy denote the unilateral right shift operators on #; and
Ho, respectively and are defined as U (u;) = w41 and Us(v;) = v4q for all
i € Np.

2. The ktP-order (C,r)-Hankel operator and its properties

In this section, we introduce and study some properties of the k*"-order
(C,r)-Hankel operator from a Hilbert space H; to Hilbert space Hs, defined
as under:

Definition. Let & > 2 be an integer, € C be a non-zero element and (a,, )nen,
be a sequence of complex numbers. An operator T from a Hilbert space H; to
Hilbert space H is said to be k**-order (C,r)-Hankel operator if

T (u;) = ZT%HMW for all i € N,
3=0
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where (u;);en, and (v;)ien, are orthonormal bases for H; and Ha, respectively.
That is, for 4,7 € Ny, if a; ; is the (i, 7)"-entry of the matrix representation of
T with respect to the orthonormal bases then

oo oo
a;j = (T (uj),vi) = < > Tjaj+klvlavi> = rajm(vnv) =17 ajpk,
1=0 =0
and hence, the corresponding matrix is given as:
[y rog 2y r3as riay L]

Qe T 41 r2ak+2 T?’Oék+3 7“4Oék+4
Qo TO2k41 7“2042k+2 7‘3042k+3 7“4Oé2k+4
[T] |8k TO3k+1 7"2043k+2 7‘3013k+3 7"4Oé3k+4
Qe TOuk1 TPQupy2  TP0ukts T oupga

Remark 2.1. (A) A kt"-order (C,r)-Hankel operator becomes r*-Hankel oper-

ator if after the first column, every consecutive (k — 1) columns are deleted.
(B) For a non-zero complex number r and complex sequence (o, )nen,, &

kth-order (C,r)-Hankel operator may not be bounded, in general. For example,

o 1

take r =1- 21, a, = \/nlfﬂ for all n € Ng and x = ano =2y Un- Then,

0o e} 2
1
2 = 2 = —_—
Hﬂ?” n§:0 ‘$n| 320: (1 _ 22)n

is finite, that is, z € H. If T is a k**-order (C,r)-Hankel operator on H, then

2

o0 o0 o0 o0
2 —
[T (@) ]ZO; Ty Otk _;; n+kj+1 >

Therefore, T is not bounded.

The above example shows that in general, a k*"-order (C,r)-Hankel operator
may not be bounded. The following result presents a characterization for the
boundedness of a k*"-order (C,r)-Hankel operator for |r| < 1.

Theorem 2.2. Let r be a non-zero complex number such that |r| < 1 and
(n)nen, be a complex sequence. Then the k'"-order (C,r)-Hankel operator,

T : H1 — Ha is bounded if and only if Z;:é D neNy 727 |ty 5% < 0.

Proof. Let |r| < 1. If T is bounded, then there exists a positive constant C
such that || T (x)|? < C||z||? for every x € H;. For each j =0,1,...k — 1, take
x = uj, we get Y o [P leknyi? = [T (u))]* < Clluj||* = C. Therefore,

Zf;é > oneng 717 [akn 517 is finite.
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| is finite. Consider

Conversely, suppose that Z;:é > onene 1717 [otkn 15

E
—

o0

SOS TUT ), v =303 11 Plagns g P4 [P 4 22 4 [k 2)

=0 [=0 7j=0n=0
k—1 oo
=33 Pk P+ [+ | 4 )
j=0n=0
k—1 oo
=37 3 P kP (L PR (1) -+ ()
=0 n=0
k—1 oo 0 ) 1— ‘T|2k(n+1)
= Z 7 v+ (1—|r|2k>
j=0n=0
1 k—1 oo
< (r=p) S X rPmnr
j=0n=0
This implies that > 00> 70 (T (w),v;)|* < oo. Therefore, T is Hilbert-
Schmidt operator and hence bounded. ([

A careful examination of the entries of a k'"-order (C,r)-Hankel matrix
points out at a relation between the entries. The same is established via the
operator equation given in the following result:

Theorem 2.3. Let Uy and Us be the unilateral right shift operators on H1 and
Ho, respectively and r be a non-zero complex number. Then a bounded linear
operator T : Hy — Ha is a k'"-order (C,r)-Hankel operator for a complex
sequence (o )nen, if and only if TUF = r*U3T.

Proof. Suppose T : Hi — Hs is a k'-order (C,r)-Hankel operator for some
complex sequence (o, )nen,- For each i,1 € Ny,

(TZ/{{"(ui),vl> = (T (uitr), 1) = Ti+k04i+k+kl
and
(F*Us T (ui), ve) = (T (us), Up (vr)) = (T (), vig1)
= Tk?"iOéi+k+kl = Ti+k0¢i+k+kl~
Using the boundedness of T, it follows that TUF = r*U;T.

Conversely, let TUF = r*U3T. We define a complex sequence (v, )nen, as
an = (1/r)1{T (u;),vp) if n =kp+j,p € Ny, j € {0,1,...k—1}. Then, for all
non-negative integers 4, such that ¢ = kp+j, wherep € N, j € {0,1,... k—1},

(T (), v0) = (TU (wimg), 01) = (PUST (wimi), 01) = 7 (T (i) Un (v2))

= (T (wick),vigr) = -+ = P (T (uizar), viga) = -

= Tkp<7—(uj)a Vipp) = Tjrkpakwklﬂ = riai+kl-
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Hence, T is a k*'-order (C,r)-Hankel operator for the sequence (v, )nen,- O

3. The kt’-order (R, r)-Hankel operator and its properties

This section firstly introduces the k"-order (R,r)-Hankel operator from a
Hilbert space H; to Hilbert space Hs and examines some of its properties.
Meanwhile, the relationship between k*"-order (C,r)-Hankel operator and k*"-
order (R, s)-Hankel operator corresponding to complex sequences (a, )nen, and
(Bn)nen,, respectively, are investigated in terms of their adjoints.

Definition. Let k£ > 2 be an integer, r be a non-zero complex number and
(an)nen, be a sequence of complex numbers. A linear operator 7 from a Hilbert
space H; to Hilbert space H is said to be k*"-order (R,r)-Hankel operator if

T (u;) = Zriaki+jvj for all i € Ny,
j=0

where (u;)ien, and (v;)ien, are orthonormal bases for H; and Hs, respectively.
Observe that for 4,5 € Ny, the (i, j)"-entry of the matrix representation of

T with respect to the orthonormal bases is b; ; = (T (u;),v;) = rfayj4+; and
the corresponding matrix is given as:

[ rag r2aop r3asg oy i
o roggr rlooppr rPospyr o
ay ragts rlasgrs rlaspys oo

7] = a3 ragys raokes rlaspys rtaurss

2 3 4
Q4 TOkyq T7O2k4q T O34 T O4kiq

Remark 3.1. (A) A k*h-order (R,r)-Hankel operator becomes r-Hankel oper-
ator if after the first row, every consecutive (k — 1) rows are deleted.

(B) For a non-zero complex number 7 and complex sequence (o, )nen, , a k-
order (R, r)-Hankel operator, in general, may not be bounded. For an example,
take r =1 —1, o, = \/ﬁ for all n € Ny and « = ZZO:O ﬁun Then,

2
]| =Y or o lzal® = D00, ‘ﬁ is finite, that is, # € H. If T is a k*-order
2

(R, r)-Hankel operator on #, then |7 (z)[|> = 3272, |37, ﬁr"aknﬂ

2
>0 | 2= ﬁ) — 00. Therefore, T is not bounded.

The next result characterizes the boundedness of k"-order (R,r)-Hankel
operators for |r| < 1.

Theorem 3.2. Let r be a non-zero complex number such that |r| < 1 and
(n)nen, be a complex sequence. Then the k'"-order (R, r)-Hankel operator,
T : Hi — Ha is bounded if and only if Y, |a,|* < oo.
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Proof. Let |r| < 1 and T be a bounded operator. Then there exists a positive
constant C such that ||7(z)||? < C||z||* for every x € H;. Taking in particular
z = ug, we get 37, oy, lom[* = || T (uo)|* < Clluoll* =

Conversely, suppose that > |a,|? < co. Consider

oo

0o o0 k—1
DON UT @), vi) P =0 lakns P+ > + 727+ -+ ")
=0

i=0 1=0 Jj=0n=0
k—1 oo
=D > lownag PO+ [P+ ()2 4 4 (1))
7j=0n=0
k—1 oo

(1 _ ‘7‘|2("+1)
= Oékn_;,_] 7_ 3 )
j=0 n=0 1 |’I“|

1 k—1 oo
<(=7m) (5 2 ol

j=0n=0

~(r=7p) (Z "“'2)

Using >07 ) |an|? < oo, it follows that Y20 S7° (T (w), v;)|* < co. There-
fore, the operator 7 is Hilbert-Schmidt and hence bounded. O

<

Proposition 3.3. Let r be a non-zero complex number and (ap)nen, C C be a
sequence. Then the adjoint of a bounded k*"-order (C,r)-Hankel operator, T :
Hi — Ha is a k" -order (R, s)-Hankel operator, S from Ho to Hq corresponding
to the complex sequence (Sn)nen,, where s = r:k and (3, = r"a, for each
n € Np.

Proof. Let 7,5 € Ny. Evaluating
(T (v5),wi) = (vg, T(wi)) = (T (), v5) = ridize; = T ok

and
. 1 7 —_— :
(S(vj),ui) = 8 Biwny = | = | ritMaag =T ;.
k
.

Hence, 7* = S, where s = %k and 3, = r*a, for each n € Ny. O

We have seen in Theorem 2.3 that there is a characterization of k*"-order
(C, s)-Hankel operator in terms of an operator equation. Using this character-
ization and the fact that a k*"-order (R,r)-Hankel operator can be obtained
from a k'"-order (C, s)-Hankel operator by taking its adjoint, the following re-
sult presents a characterization of a k'*-order (R,r)-Hankel operator in terms
of an operator equation:
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Theorem 3.4. Let Uy and Uy be the right shift operators on Hi and Ho,
respectively. Let r be a non-zero complexr number. Then a bounded operator
T : Hi — Ha is a k-order (R, r)-Hankel operator for some complex sequence
(n)nen, if and only if TUy = r(U3)*T.

Proof. Suppose that 7 is a k'"-order (R,r)-Hankel operator for a complex
sequence (ap)nen,- Using Proposition 3.3, it follows that 7 = C*, where C :
Ho — Hy is a kh-order (C, s)-Hankel operator corresponding to the sequence

(Bn)nen,, where s = (%)% and 3, = (%) @, for each n € Nyg. Now, Theorem
2.3 gives CUY = s*UU;C. Taking adjoint on both sides, it follows that (U3)*C* =
*C*U,. That is, TU; = r(Us)*T.

Conversely, if an operator 7 is such that 7U; = (U3 )*T. Then, by reversing
the steps above and by using Theorem 2.3 and Proposition 3.3, we conclude that

T is a k'-order (R,r)-Hankel operator for some complex sequence (av,)nen, -
U

Theorem 3.5. Let k > 2 be an integer, r be a non-zero complexr number such
that |r| > 1 and (on)nen, be a complex sequence. Then the following hold:

(A) The kt"-order (C,r)-Hankel operator T : Hy — Hso is bounded if and
only if Y07 |r|*"an|* < oo.
(B) The k'"-order (R, r)-Hankel operator T : H1 — Ha is bounded if and
e S
only if Y50 S peny, Ir|mFIM 722 oy, )2 < oo

Proof. Let |r| > 1 and (ap)nen, be a complex sequence.
(A) Let s = %k and (Bn)nen, be a sequence, where (8, = r*a, for each

n € Ng. The k*"-order (C,r)-Hankel operator T is bounded if and only if 7*
is bounded. Using Proposition 3.3, it follows that the operator 7* is k'"-order
(R, s)-Hankel operator corresponding to the complex sequence (8, )nen,- Since
|s| < 1, therefore, using Theorem 3.2, it is concluded that 7* is bounded if and
only if Y277 |Ba]? < oo, that is, D_0r ) [r[*"|an|* < 0.

(B) Let s = (%)% and f, = (%)cTn for each n € Ny. Since |r| > 1, so
|s| < 1. The k'"-order (R,r)-Hankel operator 7 is bounded if and only if 7*
is bounded. Using Proposition 3.3, it follows that the operator 7* is k"-order
(C, s)-Hankel operator corresponding to the complex sequence (8, )nen,- Since

|s| < 1, therefore, using Theorem 2.2, it gives 7* is bounded if and only if
k—1 .
Zj:O ZnENo |5|2]|ﬂkn+j|2 < Q. 0

4. Commutativity

In this section, commutativity of bounded k*'-order (C,r)-Hankel opera-
tors and bounded k‘"-order (R, s)-Hankel operators on a Hilbert space H are
investigated. Moreover, it is proved that there does not exist any unitary oper-
ator in the class of k'"-order (C,r)-Hankel operator or in the class of k*"-order
(R, r)-Hankel operator for any non-zero r € C.
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Theorem 4.1. Let r and s be non-zero complex numbers and (an)nen, and
(Bn)nen, be two complex sequences. Then the following hold:

(A) The bounded k*"-order (C,r)-Hankel operators T commutes with the
bounded k'"-order (C,s)-Hankel operator V on a Hilbert space H if
and only if

(oo} (oo}
> 8" Bivkjr gy = Y iy s Bk

J=0 J=0

for alli,l € Ny, provided the series on both sides converge.
(B) The bounded k'"-order (C,r)-Hankel operator T commutes with the
bounded k" -order (R, s)-Hankel operator V on H if and only if

o0 o0
> 5 BrisirI gpr = Y ks B
J=0 J=0
for alli,l € Ny, provided the series on both sides converge.
Proof. (A) For each i € Ny, consider

oo o0

TV(w) =T [ D5 Bivnguy | =D Bivny T (uy)
=0 =0
j=0 1=0
(1) =D | D s Bremrlagin | e
1=0 \ j=0
Similarly, we obtain that
(o) o ) )
(2) VT () = (D r'aipw;s Biw | w
1=0 \ j=0

Since (u;)ien, is an orthonormal basis for #, therefore, using equations (1) and
(2), it follows that 7 and V commute if and only if

oo oo
> 5 BipkrI gpr = Y ik B
=0 =0
for all 7,1 € Ny.
(B) For each i € Ny, evaluate

TV(u;)) =T Z Siﬂki+juj‘ = Z Siﬁki—i-j,r(uj)

Jj=0 Jj=0
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oo oo
= E S Bri+; E PR
3=0 1=0

(3) = Z Z 8" Brivir oy | wi
1=0 \j=0
Similarly, it is obtained that
oo oo
(4) VT (w) =Y D riairkss’ Bejt | w-
1=0 \j=0

Using equations (3) and (4), it follows that 7 and V commute if and only if

oo oo

: ) ; .
E 5" Britir oy = E T iy kS Brjsi
j=0 j=0

for all i, k € Ng. O
The example below exhibits a pair of such commuting operators:

Example 4.2. If r = s = §, a, = (5)" and 3, = QL% for all n € Ny,
then one can easily see that the k*"-order (C,r)-Hankel operator and k*"-order
(C, s)-Hankel operator are bounded (using Theorem 2.2) and they satisfy the

following expression:

o0 oo
E 8" itk 0jprt = E T 04158 Bjtki
=0 =0

for all 7,1 € Ny. Hence, these operators commute on .

Let 65,0 denote the set of all complex sequences whose only finitely many
terms are non-zero.

Theorem 4.3. Let r,s € C\{0} and o, 5 € 6p,0 be non-zero sequences, where
a = (aj)jen, and B = (Bj)jen,- Let n and m be the largest non-negative inte-
gers such that o, # 0 and B, # 0. Then the k'"-order (R,r)-Hankel operator
T and k' -order (R, s)-Hankel operator V on a Hilbert space H commute if and
only if n =m, r = s and there exists A € C such that B; = Aa; for all j € Ng.

Proof. Let if possible, n # m. Without loss of generality, we can assume that
n >m. Let n = kp + ry and m = kq + r9, where p,q € Ng and 7,79 €
{0,1,...,k—1}. In this case, we will show that the operators do not commute.
On the contrary, assume that 7 and V commute, that is, 7V (z) = VT (z) for
all z € H. In particular, take = u4. Consider

TV(Uq) =T Z Sqﬁkq_;,_ju]' =T Z Sqﬁkq_;,_ju]‘
Jj=0 j=0
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T2 0o o) o
=3 5 Brgri | Do | = | Y 8 Brgasr anjivi | s
i=0

i=0 i=0 \ j=0

n T2

(5) =2 D 8% Brqrsr i | ui

i=0 \ j=0

Similarly, we can obtain that

m n—kq
(6) VT (uq) = Z Z gy Brjvi | Wi-
i=0 \ j=0

Since the set (u;);en, is an orthonormal basis of H, a; = 0 for every ¢ > n and

B; = 0 for every j > m, therefore, on comparing the coefficients of w,, u,—_1,

Uy —o successively to ug, we get a,, = 0, a contradiction. Therefore, n = m.
Now, if n = m. Let n = kp + r1, where p € Ny and r; € {0,1,...k—1}. In

particular, take x = up in TV(z) = VT (), we have

(7) TV(up) = VT (up).

Consider

TV(UP) = T Z Spﬂkarju]' =T Zspﬁkpﬂ-uj
j=0 j=0

1 oo 0o 1
= Brpg | DI | =D Y 5 Brpasr! g | ua
=0 i=0 i=0 \ j=0
n ™1
(8) =D Brprir ki | wi
i=0 \ j=0
Similarly, we can obtain that
n 1
(9) VT (up) =Y D rPaups s Brjri | i
i=0 \ =0

Since the set (u;);en, is an orthonormal basis of # and «; = 0 = j; for every
i > n, therefore, on comparing the coefficients of u,, u,_1, u,_2 successively
to ug, it follows that s = 7 and 3; = Ao for all 0 < j < n where A = g—" O

As a consequence of this result and by using Proposition 3.3, we get the
following result:

Corollary 4.4. Letr,s € C\{0} and o, 5 € 6y,9 be non-zero sequences, where
a = (oj)jen, and B = (Bj)jen,. Let n and m be the largest non-negative
integers such that o, # 0 and B,, # 0. Then the k*"-order (C,r)-Hankel
operator T and k*"-order (C, s)-Hankel operator V commute on Hilbert space
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H if and only if n = m, r¥ = s* and there exists A € C such that s1B; = Mria;
for all 5 € Ny.

Proposition 4.5. There does not exist any unitary k'"-order (C,r)-Hankel
operator for any non-zero r € C.

Proof. If possible, let there exist a unitary k'"-order (C,r)-Hankel operator T
for some complex sequence (ay,)nen,- This implies that

(10) IT@)* = lz]* = 17 ()]

for all z € H.
Case 1: If |r| < 1. For = up and uy, in equation (10), we get

o0 o0

D lakl? =1 and Y |r[Flag* = 1.

j=0 j=1
On solving simultaneously, we obtain that |ag|? = 1— M% < 0, a contradiction.
Case 2: If |r| > 1. Using Proposition 3.3, it follows that 7* is k**-order (R, s)-
Hankel operator corresponding to complex sequence (8, )nen,, Where s = %k
and 3, = r"a;, for each n € Ny. For 2 = ug in equation (10), we get

oo

(11) Yo IBP=1.

Jj=0

Now take x = u; in equation (10), we get
(12) > I8P Bl = 1.
3=0

On solving equations (11) and (12), it follows that Zf;é 1312 =1— ‘é% <0
(a contradiction), since |r| > 1 implies |s| < 1.
Case 3: If |r| = 1. For each ¢ € Ny, take = u; in equation (10), we get
Yio laws? =1, 355 rPlewja? = 1, 352, Ir[*lang42l* = 1,..., so on. On
solving these equations, we get a; = 0 for all i € Ny, a contradiction.

Hence, there does not exist any unitary k*"-order (C,r)-Hankel operator for
any non-zero r € C. O

As a consequence of this result, we get the following results:

Corollary 4.6. There does not exist any unitary k'"-order (R, r)-Hankel op-
erator for any non-zero r € C.

Corollary 4.7. Let r be a non-zero complex number. Then the following hold:

(A) If |r| < 1, then there does not exist any isometric k'"-order (C,r)-
Hankel operator.

(B) If |r| > 1, then there does not exist any isometric k'"-order (R,7)-
Hankel operator.
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5. Future scope of study

In the previous sections, we have studied several properties of k*-order
(C,7)-Hankel operators and k'"-order (R,r)-Hankel operators from a Hilbert
space H; to a Hilbert space Hy for non-zero complex number r and complex
sequence (ap)nen,- Also, we have seen that the following one-way infinite
matrix represents the matrix representation of (C,r)-Hankel operator, T with
respect to the orthonormal bases:

[y rog 2y r3as rtay

L TR 41 7“2Oék+2 Tgak_;,_g 7‘40%_;,_4
Qo TO2k41 7’2042k+2 7"3012k+3 7°4042k+4
[7—] T |Q3g TO3k41 T20¢3k+2 T3a3k+3 7"4043k+4
Ol TOukgr  TP0upyr TP0ukgs T oupga

(13)

This concept of operator matrix can be generalized to form two-way infinite
matrix in the following manner:

1 1 1 2 3
BO—3k—3 3Q-3k—2 Q-3k—1 -3k TO_3k+1 T O_3k+2 T O_3k43
1 1 1 2 3
BO—2k-3 FQ-2k—2 O-2k—1 Q-2 TA_2k+1 T Q242 T Q_2k43
1 1 1 2 3
B3 ZO—k—2 FA—k—1 e k41 T _g42 T k43

(14) ‘e T%Oé,;g 7120472 %0471 (7)) T 7‘2042 r3a3 B Y
{%ak—s {Lzak—2 1%%4 o TR T22@k+2 r;ak+3
73 Q2k—3 72 2k —2 7 2k—1 Qo TQ2k+1 T Q2k+2 T 02k+3
7130631%3 ,.%Oéskfz %a‘dk—l Qsk TO3k+1 T20¢3k+2 7“3043k+3

where (o, )nez is a two-way complex sequence.

It can be observed that if |r| # 1 then this type of matrix induces only
unbounded operators from H; to Ha. So, there is another way to generalize
kth-order (C,r)-Hankel matrix which leads to a bounded operator from H; to
Ho if r is chosen appropriately. Consider the following matrix:

3 2 2 3
T"o-3k-3 TTQ-_3k-2 TO-_3k-1 -3k TA_3k4+1 T Q342 T X_3k+3

rPasp_3 r0_op_s TQ_gk—1 Qo TQ_opp1 T Qsky2 TPQ_2k4s
Pa_p_sg ra_g_2  Ta_p-1 0k Ta_py1 TPoipge rda_gys
(15) |... r3a_g r2a_o ro_y o rog rag riag
7"36%73 TQOékfz TOE—1 Qg TOk+1 T20<1c+2 T3ak+3
mask_g  Tl0op_2  TQop—1 Qo TOopy1l  T2Q2ki2 Tzﬂézms

3 2 2
T Q3K—-3 Q32 rasgk—1 a3k Ta3k+1 T Q3k+2 T Q3k43

This is one such generalization of k'"-order (C,r)-Hankel matrix, where oy
represents its (0,0)!" entry. Therefore, the two-way k'"-order (C,r)-Hankel
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operator, T : H1 — Ho can be defined as:

T(u;) = Z rll oy 05 for all i € Z,

j=—o00

where (u;);ez and (v;);ez are orthonormal bases for H; and Ha, respectively.
The following result describes a condition for the boundedness of two-way
kth-order (C,r)-Hankel operators:

Theorem 5.1. Let r be a non-zero complex number such that |r| < 1 and
(n)nez be a two-way complex sequence. Then the two-way kt"-order (C,r)-
Hankel operator, T : H1 — Ha is bounded if and only if

k—1
DD gl < oo

j=0nez

Proof. Let |r| < 1. If a two way k‘"-order (C, r)-Hankel operator, T is bounded,
then there exists a positive constant C' such that ||7(z)[|? < C||x||? for ev-
ery * € Hy. Take in particular @ = ug, we get > o lonl® = [T (uo)||* <
Cllugl|?* = C. Again, taking @ = u,us,...,u,_1 successively, it follows that
|’I“|2 EneZ |akn+1|2 < C’ ‘T|4 Znez |a’~m+2|2 < C) cey |T‘2k_2 ZnEZ ‘akn+k—1|2
< C. Therefore, Zk_l Y onez |T|2“Oé]m+]‘2 < 00.

Conversely, suppose that Z] 0 ZnGZ 7|27 |tk |> < co. This implies that
for each j € {0,1,2,...,k — 1}, > .y [7[¥|agns;|* < C; for some constant C;
(dependent upon j) and hence, >,y [pn5]? < ‘T(’% Let (C;,j)i,jez be the
matrix representation of the operator 7. Consider

o> G

1=—00 j=—00
o) k—1 oo
= > laklPA 2 P 2 P2 P ) Y
n=—oo j=1n=-—c0
‘Olkn+j‘2("'+ |7"3k—j|2+|’r2k_j‘2+‘Tk_j|2+|’rj|2+|’rk+j‘2+‘7“2k+j|2 )
00 0
= Y lekalP 20 D Jawn PP+ 7P+ +Z Z |0tk 451
n=-—oo n=-—oo =1 n=-—o0
((...+|r3k*j‘2+|T2kfj|2+|kaj|2)+(|rj|2+|rk+y|2+|T2k+g|2 ))
o0 o0
S SLTTEEED o (L RS B o
n=-—oo n=-—oo j=1ln=-—c0

(IP5 TP [P 25 4 1) + [ P+ 2R+ 252+ 0)
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= > lowl’ <” Qk)+2 S (I 1) ks 2
n—=—oo j=1ln=-—o0

(L4 [P + 2R 2 4

I\
o

n=

00 2|’I“|2k k—1 oo 1
= Z |akn|2 (1+1—|7‘|2k>+z Z (lrk_]|2+|r]|2)|akn+j|2 (1_|7,|2k>
n=-—o0 j=ln=—o0
) 1+‘7‘| k—1 oo 1
= 3 ol (F) + 38 0 P ()
n=-—oo j=ln=-—o00
2 o0 k—1 oo
< <1_|) D Mol +3 0 X (P 4 I s
n=—oo j=1n=-—c0
9 k—1 oo kE—1 oo
< (=i=) 2 Pl 430 30 fownssl®
j=0n= j=1ln=-o0
k—1 oo k—1
2 2 C;
= J |2 3
S <1_ lek) Z |T| |05kn+3| +‘; |7a|2j

J

Hence, >":°, Z;io |Ci ;] < oo. Therefore, the two-way operator T is Hilbert-
Schmidt and hence bounded. ([

Similar generalization can be performed for defining two-way k'"-order
(R, r)-Hankel operators from H; to Hs and this can be done as follows:

oo
T(uw;) = Z rli‘akiﬂ-vj for all i € Z,
Jj=—00
where (u;);ez and (v;);ez are orthonormal bases for H; and Ha, respectively
and its matrix representation is given as:

r3a_gp_3 TPQ_ok_3 TO_p_3 Q-3 TQE_3 T Qop—3 T Ozp—3
ra_gp_o T2 op_2 TO_p_2 Q_2 Tap_2 Tlaop_o Tiagp_o
Pa_sp1 rPoopo1 ra_p-1 a1 Top1 rlage—1 riasp_:
(16) r3a_g r2o_gp rO_p Qo rog, r2agy r3asy
3o gpi1 TPQiokp1 TO_p41 01 TQupl  TROog41 ToQ3R41
TSQ—3k+2 7’204—2k+2 TQ_g42 Q2 TOg42 T20¢2k+2 7’3(13k+2
7”304—3k+3 7’204—2k+3 TQ—g+3 Q3  TQk43 7“2042k+3 T3a3k+3

The following result illustrates a characterization for the boundedness of two-
way (R,r)-Hankel operators and its proof is on the similar lines as Theorem
5.1:
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Theorem 5.2. Let r be a non-zero complex number such that |r| < 1 and
(n)nez be two-way complex sequence. Then the two-way k*"-order (R,7)-
Hankel operator T : Hy — Ho is bounded if and only if > .> ___ |an|* < co.
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