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ORIENTED TRANSFORMATIONS ON A FINITE CHAIN:

ANOTHER DESCRIPTION

V́ıtor H. Fernandes

Abstract. Following the new description of an oriented full transforma-

tion on a finite chain given recently by Higgins and Vernitski in [4], in this
short note we present a refinement of this description which is extendable

to partial transformations and to injective partial transformations.

1. Introduction

For n ∈ N, let Ωn be a set with n elements, e.g. Ωn = {1, 2, . . . , n}. As usual,
denote by PTn the monoid (under composition) of all partial transformations
on Ωn, by Tn the submonoid of PTn of all full transformations on Ωn, by In
the symmetric inverse monoid on Ωn, i.e., the inverse submonoid of PTn of all
partial permutations on Ωn, and by Sn the symmetric group on Ωn, i.e., the
subgroup of PTn of all permutations on Ωn.

Next, suppose that Ωn is a chain, e.g. Ωn = {1 < 2 < · · · < n}. Let
s = (a1, a2, . . . , at) be a sequence of t (t ⩾ 0) elements from the chain Ωn.
We say that s is cyclic [anti-cyclic] if there exists no more than one index
i ∈ {1, . . . , t} such that ai > ai+1 [ai < ai+1], where at+1 denotes a1. Notice
that, the sequence s is cyclic [anti-cyclic] if and only if s is empty or there
exists i ∈ {0, 1, . . . , t − 1} such that ai+1 ⩽ ai+2 ⩽ · · · ⩽ at ⩽ a1 ⩽ · · · ⩽ ai
[ai+1 ⩾ ai+2 ⩾ · · · ⩾ at ⩾ a1 ⩾ · · · ⩾ ai] (the index i ∈ {0, 1, . . . , t − 1} is
unique unless s is constant and t ⩾ 2). We also say that s is oriented if s is
cyclic or s is anti-cyclic. Given a partial transformation α ∈ PTn such that
Dom(α) = {a1 < · · · < at}, with t ⩾ 0, we say that α is orientation-preserving
[orientation-reversing, oriented ] if the sequence of its images (a1α, . . . , atα) is
cyclic [anti-cyclic, oriented]. We denote by POPn the submonoid of PTn of all
orientation-preserving partial transformations and by PORn the submonoid of
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PTn of all oriented partial transformations. Let OPn be the submonoid of PTn
of all orientation-preserving full transformations and ORn be the submonoid
of PTn of all oriented full transformations, i.e., OPn = POPn∩Tn and ORn =
PORn ∩ Tn. Let us also consider the injective partial counterparts of OPn

and ORn, i.e., the inverse submonoids POPIn = POPn ∩ In and PORIn =
PORn ∩ In of PTn.

The notion of an orientation-preserving full transformation was introduced
by McAlister in [6] and, independently, by Catarino and Higgins in [1]. The
partial and injective partial versions of this concept were first considered by
the author in [2]. Since then, many articles have been published by several
authors involving semigroups of oriented transformations. In particular, the
author, with various different co-authorships, has more than a dozen published
papers on these semigroups.

Recently Higgins and Vernitski presented in [4] a new description of an
oriented transformation. From this description, in this short note, we derive
yet another description of an oriented transformation which is, on the one hand
and in a certain sense, simpler and, on the other hand, extendable to partial
transformations and to injective partial transformations.

2. The description

Let us consider the following permutations of Ωn of order n and 2, respec-
tively:

g =

(
1 2 · · · n− 1 n
2 3 · · · n 1

)
and h =

(
1 2 · · · n− 1 n
n n− 1 · · · 2 1

)
.

It is clear that g is an orientation-preserving transformation and h is an orienta-
tion-reversing transformation. Moreover, for n ⩾ 3, g together with h generate
the well-known dihedral group D2n of order 2n (considered as a subgroup of
Sn):

D2n = {1, g, g2, . . . , gn−1, h, hg, hg2, . . . , hgn−1}.
Let Cn be the cyclic group of order n generated by g, i.e.,

Cn = {1, g, g2, . . . , gn−1}.

Notice that Cn is the group of units of OPn, POPIn and POPn and, on the
other hand, for n ⩾ 3, D2n is the group of units of ORn, PORIn and PORn

(for n ∈ {1, 2}, their group of units is also Cn).
Now, let s = (a1, a2, . . . , at) be a sequence of t elements from the chain Ωn,

with t ⩾ 3. It is easy to show that:

• s is cyclic [anti-cyclic] if and only if, for all σ ∈ Ct, (a1σ, a2σ, . . . , atσ)
is cyclic [anti-cyclic];

• s is cyclic [anti-cyclic] if and only if, for all σ∈D2t\Ct, (a1σ, a2σ, . . . , atσ)
is anti-cyclic [cyclic];

• s is oriented if and only if, for all σ ∈ D2t, (a1σ, a2σ, . . . , atσ) is oriented;
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• s is cyclic [anti-cyclic, oriented] if and only if there exists σ ∈ Ct [σ ∈
D2t \ Ct, σ ∈ D2t] such that a1σ ⩽ a2σ ⩽ · · · ⩽ atσ.

Next, we recall the following recent descriptions of OPn and ORn proved
by Higgins and Vernitski in [4, Theorem 3 and Theorem 7] (see also [5]):

Proposition 2.1. Let α ∈ Tn. Then

(1) α ∈ OPn if and only if, for every triple (a1, a2, a3) of elements of Ωn,
(a1, a2, a3) and (a1α, a2α, a3α) are both cyclic or both anti-cyclic;

(2) α ∈ ORn if and only if, for every oriented quadruple (a1, a2, a3, a4) of
elements of Ωn, the quadruple (a1α, a2α, a3α, a4α) is also oriented.

Observe that it is easy to show that any triple of elements of Ωn is oriented.
Furthermore, given a triple (a1, a2, a3) of elements of Ωn, (a1, a2, a3) is cyclic
if and only if (a3, a2, a1) is anti-cyclic. This allows us to easily derive from
Property 1 of Proposition 2.1 the following simpler characterization of OPn.

Corollary 2.2. Let α ∈ Tn. Then α ∈ OPn if and only if, for every cyclic
triple (a1, a2, a3) of elements of Ωn, (a1α, a2α, a3α) is also cyclic.

In fact, we can further simplify both characterizations given in Proposition
2.1:

Corollary 2.3. Let α ∈ Tn. Then α ∈ OPn [α ∈ ORn] if and only if, for
every non-decreasing triple [quadruple] (a1, a2, a3[, a4]) of elements of Ωn, the
triple [quadruple] (a1α, a2α, a3α[, a4α]) is cyclic [oriented].

Proof. Since any non-decreasing sequence of Ωn is cyclic, for both properties,
it remains to prove the converse implications.

Suppose that, for every non-decreasing triple [quadruple] (a1, a2, a3[, a4]) of
elements of Ωn, the triple [quadruple] (a1α, a2α, a3α[, a4α]) is cyclic [oriented].
Let (a1, a2, a3[, a4]) be a cyclic triple [an oriented quadruple] of elements of Ωn.
Take σ ∈ C3 [σ ∈ D2·4] such that a1σ ⩽ a2σ ⩽ a3σ[⩽ a4σ]. Then, by hypothesis,
(a1σα, a2σα, a3σα[, a4σα]) is cyclic [oriented]. Let a′i = aiα for i = 1, 2, 3[, 4].
Then (a′1σ, a

′
2σ, a

′
3σ[, a

′
4σ]) is cyclic [oriented] and so, since σ−1 ∈ C3 [σ−1 ∈

D2·4], by the above observation, (a1α, a2α, a3α[, a4α]) = (a′1, a
′
2, a

′
3[, a

′
4]) =

(a′(1σ)σ−1 , a′(2σ)σ−1 , a′(3σ)σ−1 [, a′(4σ)σ−1 ]) is also cyclic [oriented]. Thus, by Corol-

lary 2.2 [Proposition 2.1], we get α ∈ OPn [α ∈ ORn], as required. □

As observed above, any triple of elements of Ωn is oriented. From this fact, it
is easy to deduce that any quadruples of elements of Ωn of the form (a, a, b, c),
(a, b, b, c) and (a, b, c, c) are also oriented. It is also clear that triples of Ωn

of the form (a, a, b) and (a, b, b) are cyclic. Therefore, it is easy to check that
we can replace non-decreasing triples and quadruples by (strictly) increasing
triples and quadruples, respectively, in the statements of Corollary 2.3 and, in
this way, obtaining the following characterizations of OPn and ORn, where by
width of a partial transformation we mean, as usual, the number of elements
in its domain:
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Theorem 2.4. Let α ∈ Tn. Then α ∈ OPn [α ∈ ORn] if and only if every
restriction of α of width three [four] belongs to POPn [PORn].

Next, we aim to extend this last result to partial transformations.
Let α ∈ PTn. For our purpose, it is enough to consider transformations of

width greater than or equal to three. Thus, let us suppose that Dom(α) =
{i1 < i2 < · · · < ik}, with k ⩾ 3. Then, we define ᾱ ∈ Tn by

iᾱ =

 i1α if 1 ⩽ i ⩽ i2 − 1,
iℓα if iℓ ⩽ i < iℓ+1, ℓ = 2, 3, . . . , k − 1,
ikα if ik ⩽ i ⩽ n.

The following lemma is easy to check:

Lemma 2.5. Let α ∈ PTn such that |Dom(α)| ⩾ 3. Then α ∈ POPn [α ∈
PORn] if and only if ᾱ ∈ OPn [ᾱ ∈ ORn].

Now, take α ∈ PTn such that every restriction of α of width three [four]
belongs to POPn [PORn].

Our objective is to prove that α ∈ POPn [α ∈ PORn]. Take Dom(α) =
{i1 < i2 < · · · < ik}.

If |Dom(α)| ⩽ 2 [⩽ 3], then it is clear that α ∈ POPn [α ∈ PORn].
Therefore, we are going to consider |Dom(α)| ⩾ 3 [⩾ 4].

Define I1 = {1, . . . , i2 − 1}, Iℓ = {iℓ, . . . , iℓ+1 − 1} for ℓ = 2, . . . , k − 1, and
Ik = {ik, . . . , n}.

Let X = {a1 < a2 < a3[< a4]} be a subset of Dom(α) with three [four]
elements. Then, we aim to show that ᾱ|X ∈ POPn [ᾱ|X ∈ PORn].

Take r1, r2, r3[, r4] ∈ {1, 2, . . . , k} such that ai ∈ Iri for i = 1, 2, 3[, 4]. Since
a1 < a2 < a3[< a4], then r1 ⩽ r2 ⩽ r3[⩽ r4] and

ᾱ|X =

(
a1 a2 a3
ir1α ir2α ir3α

[
a4
ir4α

])
.

If r1 = r2 or r2 = r3 [or r3 = r4], then ir1α = ir2α or ir2α = ir3α [or ir3α =
ir4α], whence (ir1α, ir2α, ir3α[, ir4α]) is cyclic [oriented] and so ᾱ|X ∈ POPn

[ᾱ|X ∈ PORn].
Otherwise, we have r1 < r2 < r3[< r4] and thus, by hypothesis,

α|{ir1 ,ir2 ,ir3} ∈ POPn [α|{ir1 ,ir2 ,ir3 ,ir4} ∈ PORn].

Hence (ir1α, ir2α, ir3α[, ir4α]) is cyclic [oriented] and so, also in this case, we
obtain ᾱ|X ∈ POPn [ᾱ|X ∈ PORn].

Now, by applying Theorem 2.4, we get ᾱ ∈ OPn [ᾱ ∈ ORn] and then, by
Lemma 2.5, it follows that α ∈ POPn [α ∈ PORn].

Thus, we may conclude the following characterizations of POPn and PORn:

Theorem 2.6. Let α ∈ PTn. Then α ∈ POPn [α ∈ PORn] if and only if
every restriction of α of width three [four] belongs to POPn [PORn].

And, as an immediate corollary of the previous result, we have:
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Theorem 2.7. Let α ∈ In. Then α ∈ POPIn [α ∈ PORIn] if and only if
every restriction of α of width three [four] belongs to POPIn [PORIn].

3. An application

Let n ⩾ 3. Consider the cycle graph Cn = ({1, 2, . . . , n}, {{i, i + 1} | i =
1, 2, . . . , n − 1} ∪ {{1, n}}) with n vertices. Denote by d(x, y) the (geodesic)
distance between two vertices x and y of Cn, i.e., the number of edges in a short-
est path between x and y. Notice that d(x, y) = min{|x−y|, n−|x−y|} and so
0 ⩽ d(x, y) ⩽ n

2 , for all x, y ∈ {1, 2, . . . , n}. Let us consider the monoidDPCn of
all partial isometries (or distance preserving partial transformations) of Cn, i.e.,
DPCn = {α ∈ PTn |d(xα, yα) = d(x, y) for all x, y ∈ Dom(α)}. This monoid
was studied by the author together with Paulista in [3]. Observe that it is easy
to show that DPCn is an inverse submonoid of the symmetric inverse monoid
In. Furthermore, DPCn is also a submonoid of PORIn. However, this last
inclusion is not trivial. Although it has already been proved in the above men-
tioned paper, we aim to present here an alternative proof of this property by
making use of Theorem 2.7:

Proposition 3.1. The monoid DPCn is contained in PORIn.

Proof. By Theorem 2.7, it suffices to show that all transformations of DPCn of
width 4 belong to PORIn (notice that any restriction of an element of DPCn
is obviously an element of DPCn).

Let

α =

(
i1 i2 i3 i4
j1 j2 j3 j4

)
∈ DPCn,

with i1 < i2 < i3 < i4. Let α′ = gi1−1αgn−j1+1 ∈ DPCn. Then 1α′ =
1gi1−1αgn−j1+1 = i1αg

n−j1+1 = j1g
n−j1+1 = 1 and, since α = gn−i1+1α′gj1−1

and g ∈ PORIn, we also have α ∈ PORIn if and only if α′ ∈ PORIn.
Therefore, we can reduce the proof to transformations of DPCn of width 4 of
the form

α =

(
1 i2 i3 i4
1 j2 j3 j4

)
,

with i2 < i3 < i4. Clearly, in this case, α ̸∈ PORIn if and only if either
(j2 < j3 and j3 > j4) or (j2 > j3 and j3 < j4). Let

α′ = αhg =

(
1 i2 i3 i4
1 n− j2 + 2 n− j3 + 2 n− j4 + 2

)
.

Since g, h ∈ PORIn and α = α′gn−1h, we have α ∈ PORIn if and only if
α′ ∈ PORIn. On the other hand, we also have j2 < j3 and j3 > j4 if and only
if n− j2 + 2 > n− j3 + 2 and n− j3 + 2 < n− j4 + 2 and, dually, j2 > j3 and
j3 < j4 if and only if n− j2 +2 < n− j3 +2 and n− j3 +2 > n− j4 +2. Thus,
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we can further reduce the proof to transformations of DPCn of width 4 of the
form

α =

(
1 i2 i3 i4
1 j2 j3 j4

)
,

with i2 < i3 < i4 and j2 < j3.
In order to obtain a contradiction, suppose that α ̸∈ PORIn. Then, we

must also have j3 > j4.

Let p = 2, 3, 4. Then, from the equality d(1, ip) = d(1, jp), we obtain

jp = ip,

if either ip − 1 ⩽ n
2 and jp − 1 ⩽ n

2 or ip − 1 > n
2 and jp − 1 > n

2 , and

jp = n− ip + 2,

if either ip − 1 ⩽ n
2 and jp − 1 > n

2 or ip − 1 > n
2 and jp − 1 ⩽ n

2 .
Now, we proceed by considering all possible cases for j2, j3 and j4.

Case 1: j2 = i2.

Case 1.1: j2 = i2 and j3 = i3.
Since j4 < j3, we can not have j4 = i4 and so j4 = n− i4 + 2, i.e.,

α =

(
1 i2 i3 i4
1 i2 i3 n− i4 + 2

)
.

Notice that n− i4 + 2 < i3.
First, admit that i4− i3 ⩽ n

2 , whence d(i3, i4) = i4− i3. If d(n− i4+2, i3) =
n − i3 + (n − i4 + 2), then i4 − i3 = n − i3 + n − i4 + 2 and so i4 = n + 1,
which is a contradiction. Hence, d(n − i4 + 2, i3) = i3 − (n − i4 + 2) and so
i4 − i3 = i3 − n+ i4 − 2, which implies that i3 = n+2

2 .
On the other hand, admit that i4 − i3 > n

2 , whence d(i3, i4) = n − i4 + i3.
If d(n− i4 + 2, i3) = i3 − (n− i4 + 2), then n− i4 + i3 = i3 − n+ i4 − 2 and so
i4 = n+1, which is a contradiction. Hence, d(n−i4+2, i3) = n−i3+(n−i4+2)
and so n− i4 + i3 = n− i3 + n− i4 + 2, which implies that i3 = n+2

2 .

Therefore, in either case, we have i3 = n+2
2 .

Next, suppose that i4−i2 ⩽ n
2 , whence d(i2, i4) = i4−i2. If d(i2, n−i4+2) =

n − |(n − i4 + 2) − i2|, then i2 = 1 or i4 = n + 1, which is a contradiction in
both cases. Hence, d(i2, n − i4 + 2) = |(n − i4 + 2) − i2| and so i4 = n+2

2 or

i2 = n+2
2 , which is again a contradiction (since i3 = n+2

2 ).
Therefore, i4 − i2 > n

2 and so d(i2, i4) = n − i4 + i2. If d(i2, n − i4 + 2) =
|(n− i4 + 2)− i2|, then i2 = 1 or i4 = n+ 1, which is a contradiction in both
cases. Hence, d(i2, n − i4 + 2) = n − |(n − i4 + 2) − i2| and so i4 = n+2

2 or

i2 = n+2
2 , which is again a contradiction (since i3 = n+2

2 ).
Thus, Case 1.1 cannot occur.

Case 1.2: j2 = i2 and j3 = n− i3 + 2.
We begin by observing that, since i2 < n−i3+2, from the equality d(i2, i3) =

d(i2, n− i3 + 2), we have i2 = 1 or i3 = n+2
2 , whence i3 = n+2

2 .
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If j4 = n − i4 + 2, then from the equality d(i2, i4) = d(i2, n − i4 + 2), by
the same calculations made above, we obtain i2 = n+2

2 or i4 = n+2
2 , which is a

contradiction (since i3 = n+2
2 ). Therefore, j4 = i4 > i3 = n+2

2 = n−i3+2 = j3,
which is again a contradiction.

Thus, Case 1.2 cannot occur either and so Case 1 does not occur.

Case 2: j2 = n− i2 + 2.
As i2 < i3, then n− i3 +2 < n− i2 +2 and so j3 = i3 (since j2 < j3). Now,

since n − i2 + 2 < i3, from the equality d(i2, i3) = d(n − i2 + 2, i3), we have
i3 = n + 1 or i2 = n+2

2 , whence i2 = n+2
2 = n − i2 + 2 = j2. Therefore, this

case is a particular instance of Case 1 and so cannot occur either.

Thus, we conclude that α ∈ PORIn, as required. □
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