Acknowledgement
The authors gratefully acknowledge the financial support by the National Key R&D Program of China [Grant No. 2021YFB2600605, 2021YFB2600600], the Key R&D Program of Hebei Province [Grant No. 19275405D], the Hebei Provincial Transport Bureau Research Program [Grant No. TH-201902] and Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration [Grant No. 2019D22].
References
- Ahmed-Ali, T., Kenne, G. and Lamnabhi-Lagarrigue, F. (2009), "Identification of nonlinear systems with time-varying parameters using a sliding-neural network observer", Neurocomputing, 72, 1611-1620. https://doi.org/10.1016/j.neucom.2008.09.001
- Asl, R.M., Hagh, Y.S., Simani, S. and Handroos, H. (2019), "Adaptive square-root unscented Kalman filter: An experimental study of hydraulic actuator state estimation", Mech. Syst. Signal Process., 132, 670-691. https://doi.org/10.1016/j.ymssp.2019.07.021
- Astroza, R., Ebrahimian, H. and Conte, J. (2019a), "Performance comparison of Kalman-based filters for nonlinear structural finite element model updating", J. Sound Vib., 438, 520-542. https://doi.org/10.1016/J.JSV.2018.09.023
- Astroza, R., Alessandri, A. and Conte, J.P. (2019b), "A dual adaptive filtering approach for nonlinear finite element model updating accounting for modeling uncertainty", Mech. Syst. Signal Process., 115, 782-800. https://doi.org/10.1016/j.ymssp.2018.06.014
- Bao, Y., Velni, J.M., Basina, A. and Shahbakhti, M. (2020), "Identification of state-space linear parameter-varying models using artificial neural networks", IFAC-PapersOnLine, 53, 5286-5291. https://doi.org/10.1016/J.IFACOL.2020.12.1209
- Bisht, S.S. and Singh, M.P. (2014), "An adaptive unscented Kalman filter for tracking sudden stiffness changes", Mech. Syst. Signal Process., 49, 181-195. https://doi.org/10.1016/j.ymssp.2014.04.009
- Calabrese, A., Strano, S. and Terzo, M. (2018), "Adaptive constrained unscented Kalman filtering for real-time nonlinear structural system identification", Struct. Control Health Monitor., 25. https://doi.org/10.1002/STC.2084
- Cao, J.X., Xiong, H.B. and Chen, L. (2020), "Procedure for parameter identification and mechanical properties assessment of CLT connections", Eng. Struct., 203. https://doi.org/10.1016/j.engstruct.2019.109867
- Chen, Y.Y. and Zhou, Y.W. (2020), "Machine learning based decision making for time varying systems: parameter estimation and performance optimization", Knowl. Based Syst., 190. https://doi.org/10.1016/j.knosys.2020.105479
- Chin, R., Maass, A.I., Ulapane, N., Manzie, C., Shames, I., Nesic, D., Rowe, J.E. and Nakada, H. (2020), "Active learning for linear parameter-varying system identification", ArXiv, abs/2005.00711. https://doi.org/10.1016/J.IFACOL.2020.12.1274
- Chowdhary, G. and Jategaonkar, R. (2010), "Aerodynamic parameter estimation from flight data applying extended and unscented Kalman filter", Aerosp. Sci. Technol., 14(2), 106-117. https://doi.org/10.1016/j.ast.2009.10.003
- Chung, M.J. and Sato, T. (2006), "Structural identification using stochastic filtering techniques based on measurements from wireless data acquisition system", Steel Struct., 6, 353-360. https://doi.org/10.12989/scs.2006.6.4.353
- Cui, M., Khodayar, M., Chen, C., Wang, X., Zhang, Y. and Khodayar, M.E. (2019), "Deep learning based time-varying parameter identification for system-wide load modeling", LEEE Transact. Smart Grid, 10, 6102-6114. https://doi.org/10.1109/Tsg.2019.2896493
- Ding, Y., Guo, L.N. and Zhao, B. (2017), "Parameter Identification for Nonlinear Structures by a Constrained Kalman Filter with Limited Input Information", Int. J. Struct. Stabil. Dyn., 17, 1750010. https://doi.org/10.1142/S0219455417500109
- Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Digest, 30(2), 91-105. https://doi.org/10.1177/058310249803000201
- Guo, L.N., Ding, Y., Wang, Z., Xu, G.S. and Wu, B. (2018), "A dynamic load estimation method for nonlinear structures with unscented Kalman filter", Mech. Syst. Signal Process., 101, 254-273. https://doi.org/10.1016/j.ymssp.2017.07.047
- Hu, P.D., Zhang, M.Z., Zhang, R., Wu, Q.P. and Yang, A.L. (2021), "Correlation method and Kalman filter-based adaptive angle rate estimation for time-varying periodic signals of the attitude and heading reference system", Mech Syst. Signal Process., 156. https://doi.org/10.1016/j.ymssp.2021.107695
- Humar, J., Bagchi, A. and Xu, H.P. (2006), "Performance of vibration-based techniques for the identification of structural damage", Struct. Health Monitor., 5, 215-241. https://doi.org/10.1177/1475921706067738
- Jategaonkar, R. and Plaetenschke, E. (1998), "Estimation of aircraft parameters using filter error methods and extended Kalman filter", DFVLR FB, 88-15.
- Julier, S.J., Uhlmann, J.K. and Durrant-Whyte, H.F. (1995), "A new approach for filtering nonlinear systems", Proceedings of 1995 American Control Conference-ACC'95, 3, 1628-1632. https://doi.org/10.1109/ACC.1995.529783
- Manoach, E., Samborski, S., Mitura, A. and Warminski, J. (2012), "Vibration based damage detection in composite beams under temperature variations using Poincare maps", Int. J. Mech. Sci., 62, 120-132. https://doi.org/10.1016/J.IJMECSCI.2012.06.006
- Mariani, S. and Ghisi, A. (2007), "Unscented Kalman filtering for nonlinear structural dynamics", Nonlinear Dyn., 49, 131-150. https://doi.org/10.1007/s11071-006-9118-9
- Masti, D., Bernardini, D. and Bemporada, A. (2021), "A machine-learning approach to synthesize virtual sensors for parameter-varying systems", ArXiv, 61, 40-49. https://doi.org/10.1016/j.ejcon.2021.06.005
- Mulay, A., Ben, B.S., Ismail, S. and Kocanda, A. (2019), "Prediction of average surface roughness and formability in single point incremental forming using artificial neural network", Arch. Civil Mech. Eng., 19, 1135-1149. https://doi.org/10.1016/j.acme.2019.06.004
- Naranjo-Perez, J., Jimenes Alonso, J.F., Pavic, A. and Saez, A. (2020), "Finite-element-model updating of civil engineering structures using a hybrid UKF-HS algorith", Struct. Infrastr. Eng., 17, 620-637. https://doi.org/10.1080/15732479.2020.1760317
- Nguyen, H., Vu, T., Vo, T.P. and Thai, H.T. (2021), "Efficient machine learning models for prediction of concrete strengths", Constr. Build. Mater., 266. https://doi.org/10.1016/j.conbuildmat.2020.120950
- Pappalardo, C.M. and Guida, D. (2016), "Control of nonlinear vibrations using the adjoint method", Meccanica, 52, 2503-2526. https://doi.org/10.1007/s11012-016-0601-1
- Pappalardo, C.M. and Guida, D. (2017), "Adjoint-Based Optimization Procedure for Active Vibration Control of Nonlinear Mechanical Systems", J. Dyn. Syst. Measure. Control-Transact. ASME, 139, 081010. https://doi.org/10.1115/1.4035609
- Rahimi, A., Kumar, K.D. and Alighanbari, H. (2017), "Fault estimation of satellite reaction wheels using covariance based adaptive unscented Kalman filter", Acta Astronautica, 134, 159-169. https://doi.org/10.1016/j.actaastro.2017.02.003
- Sadhukhan, C., Mitra, S.K., Naskar, M.K. and Sharifpur, M. (2021), "Fault diagnosis of a nonlinear hybrid system using adaptive unscented Kalman flter bank", Eng. Comput., 38, 2717-2728. https://doi.org/10.1007/s00366-020-01235-0
- Schleiter, S. and Altay, O. (2020), "Identification of abrupt stiffness changes of structures with tuned mass dampers under sudden events", Struct. Control Health Monitor., 27. https://doi.org/10.1002/stc.2530
- Shu, X.S., Bao, T.F., Li, Y.T., Gong, J. and Zhang, K. (2021), "VAE-TALSTM: a temporal attention and variational autoencoder-based long short-term memory framework for dam displacement prediction", Eng. Comput. https://doi.org/10.1007/s00366-021-01362-2
- Song, M., Astroza, R., Ebrahimian, H., Moaveni, B. and Papadimitriou, C. (2020), "Adaptive Kalman filters for nonlinear finite element model updating", Mech. Syst. Signal Process., 143. https://doi.org/10.1016/j.ymssp.2020.106837
- Soyoz, S. and Feng, M.Q. (2009), "Long-term monitoring and identification of bridge structural parameters", Comput.-Aided Civil Infrastr. Eng., 24, 82-92. https://doi.org/10.1111/j.1467-8667.2008.00572.x
- Taffese, W.Z. and Sistonen, E. (2017), "Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions", Automat. Constr., 77, 1-14. https://doi.org/10.1016/j.autcon.2017.01.016
- Wang, L.J., Xie, Y.X., Wu, Z.J., Du, Y.X. and He, K.D. (2018), "A new fast convergent iteration regularization method", Eng. Comput., 35, 127-138. https://doi.org/10.1007/s00366-018-0588-4
- Wang, N., Li, L.Y. and Wang, Q. (2019), "Adaptive UKF-Based Parameter Estimation for Bouc-Wen Model of Magnetorheological Elastomer Materials", J. Aerosp. Eng., 32, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000961-4
- Xiao, X., Xu, X. and Shen, W. (2020), "Simultaneous identification of the frequencies and track irregularities of high-speed railway bridges from vehicle vibration data", Mech. Syst. Signal Process., 152, 107412. https://doi.org/10.1016/j.ymssp.2020.107412
- Yan, G., Sun, H. and Buyukozturk, O. (2016), "Impact load identification for composite structures using Bayesian regularization and unscented Kalman filter", Struct. Control Health Monitor., 24(5). https://doi.org/10.1002/stc.1910
- Yang, J.N. and Lin, S. (2005), "Identification of parametric variations of structures based on least squares estimation and adaptive tracking technique", J. Eng. Mech., 131, 290-298. https://doi.org/10.1061/(Asc(e)0733-9399(2005)131:3(290)
- Yang, J.N., Lin, S.L., Huang, H.W. and Zhou, L. (2006), "An adaptive extended Kalman filter for structural damage identification", Struct. Control Health Monitor., 13, 849-867. https://doi.org/10.1002/stc.84
- Zhou, W., Li, X.L., Yi, J. and He, H.B. (2019), "A Novel UKF-RBF Method based on adaptive noise factor for fault diagnosis in pumping unit", IEEE Transact. Indust. Inform., 15. https://doi.org/1415-1424. 10.1109/TII.2018.2839062